Browse > Article
http://dx.doi.org/10.5012/bkcs.2012.33.8.2675

Formation of Niobium Oxide Film with Duplex Layers by Galvanostatic Anodization  

Kim, Hyun-Kee (Department of Biological Science, Andong National University)
Yoo, Jeong-Eun (Department of Chemical Engineering, Inha University)
Park, Ji-Young (Department of Chemical Engineering, Inha University)
Seo, Eul-Won (Department of Biological Science, Andong National University)
Choi, Jin-Sub (Department of Chemical Engineering, Inha University)
Publication Information
Abstract
Studies on niobium anodization in the mixture of 1 M $H_3PO_4$ and 1 wt % HF at galvanostatic anodization are described here in detail. Interestingly, duplex niobium oxide consisting of thick barrier oxide and correspondingly thick porous oxide was prepared at a constant current density of higher than 0.3 $mAcm^{-2}$, whereas simple porous type oxide was formed at a current density of lower than 0.3 $mAcm^{-2}$. In addition, simple barrier or porous type oxide was obtained by galvanostatic anodization at a single electrolyte of either 1 M $H_3PO_4$ or 1 wt % HF, respectively. The formation mechanism of duplex type structures was ascribed to different forming voltages required for moving anions.
Keywords
Niobium; Porous layer; Barrier layer; Duplex oxide;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Xie, Y.; Li, Z.; Xu, H.; Xie, K.; Xu, Z.; Zhang, H. Electrochem. Commun. doi: 10.1016/j.elecom.2012.01.021.
2 Diggle, J. W.; Downie, T. C.; Coulding, C. W. Chem. Rev. 1969, 69, 365-405.   DOI
3 Matsuno, H.; Yokoyama, A.; Watari, F.; Uo, M.; Kawasaki, T. Biomaterials 2001, 22, 1253.   DOI
4 Miyazaki, T.; Kim, H.; Kokubo, T.; Ohtsuki, C.; Nakamura, T. J. Ceram. Soc. Jpn. 2001, 109, 929.   DOI
5 Lee, C.; Kwon, D.; Yoo, J. E.; Lee, B. G.; Choi, J.; Chung, B. H. Sensors 2010, 10, 5160.   DOI
6 Tauseef Tanvir, M.; Aoki, Y.; Habazaki, H. Thin Solid Films 2009, 517, 6711.   DOI
7 Yoo, J. E.; Choi, J. Electrochem. Commun. 2011, 13, 298.   DOI
8 Kominami, H.; Oki, K.; Kohno, M.; Onoue, S.; Kera, Y.; Ohtani, B. J. Mater. Chem. 2001, 11, 604.   DOI
9 Torres, J. D.; Faria, E. A.; SouzaDe, J. R.; Prado, A. G. S. J. Photochem. Photobiol. A 2006, 182, 202.   DOI
10 Xie, Y.; Li, Z.; Xu, Z.; Zhang, H. Electrochem. Commun. 2011, 13, 788.   DOI
11 Choi, J.; Lim, J. H.; Lee, S. C.; Chang, J. H.; Kim, K. J.; Cho, M. A. Electrochim. Acta 2006, 51, 5502.   DOI
12 Robert, L. K. Electrochem. Commun. 2005, 7, 1190.   DOI
13 Sayama, K.; Sugihara, H.; Arakawa, H. Chem. Mat. 1998, 10, 3825.   DOI
14 Lim, J. H.; Park, G.; Choi, J. Curr. Appl. Phys. 2012, 12, 155.   DOI   ScienceOn
15 Nielsch, K.; Choi, J.; Schwirn, K.; Wehrspohn, R. B.; Gosele, U. Nano Lett. 2002, 2, 677.   DOI   ScienceOn
16 Patermarakis, G.; Papandreadis, N. Electrochim. Acta 1993, 38, 2351.   DOI
17 Castro, A.; Millán, P.; Pardo, L.; Jimenez, B. J. Mater. Chem. 1999, 9, 1313.   DOI
18 Aegerter, M. A. Sol. Energ. Mat. Sol. C 2001, 68, 401.   DOI
19 Shawaqfeh, A. T.; Baltus, R. E. J. Electrochem. Soc. 1998, 145, 2699.   DOI
20 Ono, S.; Saito, M.; Ishiguro, M.; Asoh, H. J. Electrochem. Soc. 2004, 151, B473.   DOI   ScienceOn
21 Ono, S.; Saito, M.; Asoh, H. Electrochim. Acta 2005, 51, 827.   DOI
22 Montero-Moreno, J. M.; Sarret, M.; Müller, C. Micropor. Mesopor. Mat. 2010, 136, 68.   DOI
23 Patermarakis, G.; Moussoutzanis, K. J. Electroanal. Chem. 2011, 659, 176.   DOI