Browse > Article
http://dx.doi.org/10.5012/bkcs.2012.33.12.4084

Substituent Effect on the Structure and Biological Property of 99mTc-Labeled Diphosphonates: Theoretical Studies  

Qiu, Ling (Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine)
Lin, Jian-Guo (Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine)
Gong, Xue-Dong (Institute for Computation in Molecular and Material Science, School of Chemical Engineering, Nanjing University of Science and Technology)
Cheng, Wen (Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine)
Luo, Shi-Neng (Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine)
Publication Information
Abstract
Theoretical calculations based on density functional theory (DFT) were performed to study the substituent effect on the geometric and electronic structures as well as the biological behavior of technetium-99m-labeled diphosphonate complexes. Optimized structures of these complexes are surrounded by six ligands in an octahedral environment with three unpaired 4d electrons ($d^3$ state) and the optimized geometry of $^{99m}Tc$-MDP agrees with experimental data. With the increase of electron-donating substituent or tether between phosphate groups, the energy gap between frontier orbitals increases and the probability of non-radiative deactivation via d-d electron transfer decreases. The charge distribution reflects a significant ligand-to-metal electron donation. Based on the calculated geometric and electronic structures and biologic properties of $^{99m}Tc$-diphosphonate complexes, several structure-activity relationships (SARs) were established. These results may be instructive for the design and synthesis of novel $^{99m}Tc$-diphosphonate bone imaging agent and other $^{99m}Tc$-based radiopharmaceuticals.
Keywords
Bone imaging agent; $^{99m}Tc$-diphosphonate; Substituent effect; SAR; DFT;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Dilworth, J. R.; Parrott, S. J. Chem. Soc. Rev. 1998, 27, 43.   DOI   ScienceOn
2 Kodina, G. E. In Isotopes. Properties, Obtaining, Applications; Baranov, V. Y., Ed.; Atomnaya Energiya: Moscow, 2000.
3 Mendez-Rojas, M. A.; Kharisov, B. I.; Tsivadze, A. Y. J. Coord. Chem. 2006, 59, 1.   DOI   ScienceOn
4 Jurisson, S. S.; Lydon, J. D. Chem. Rev. 1999, 99, 2205.   DOI   ScienceOn
5 Pauwels, E. K.; Stokkel, M. P. Q. J. Nucl. Med. 2001, 45, 18.
6 Bartholom, M. D.; Louie, A. S.; Valliant, J. F.; Zubieta, J. Chem. Rev. 2010, 110, 2903.   DOI   ScienceOn
7 Subramanian, G.; McAfee, J. G.; Blair, R. J.; Kallfelz, F. A.; Thomas, F. D. J. Nucl. Med. 1975, 16, 744.
8 Bevan, J. A.; Tofe, A. J.; Benedict, J. J.; Francis, M. D.; Barnett, B. L. J. Nucl. Med. 1980, 21, 961.
9 Love, C.; Din, A. S.; Tomas, M. B.; Kalapparambath, T. P.; Palestro, C. J. Radiographics. 2003, 23, 341.   DOI   ScienceOn
10 Laznicek, M.; Laznickova, A.; Budsky, F. Nucl. Med. Commun. 1996, 17, 1016.   DOI
11 Fueger, B. J.; Mitterhauser, M.; Wadsak, W.; Ofluoglu, S.; Traub, T.; Karanikas, G.; Dudczak, R.; Pirich, C. Nucl. Med. Commun. 2004, 25, 361.   DOI   ScienceOn
12 El-Mabhouh, A. A.; Angelov, C. A.; Cavell, R.; Mercer, J. R. Nucl. Med. Biol. 2006, 33, 715.   DOI   ScienceOn
13 Palma, E.; Oliveira, B. L.; Correia, J. D.; Gano, L.; Maria, L.; Santos, I. C.; Santos, I. J. Biol. Inorg. Chem. 2007, 12, 667.   DOI
14 Asikoglu, M.; Durak, F. G. Appl. Radiat. Isotopes. 2009, 67, 1616.   DOI   ScienceOn
15 Guo, X. H.; Luo, S. N.; Wang, H. Y.; Zhou, L.; Xie, M. H.; Ye, W. Z.; Yang, M.; Wang, Y. Nucl. Sci. Tech. 2006, 17, 285.   DOI   ScienceOn
16 Chen, C. Q.; Luo, S. N.; Lin, J. G.; Yang, M.; Ye, W. Z.; Qiu, L.; Sang, G. M.; Xia, Y. M. Nucl. Sci. Tech. 2009, 20, 302.
17 Lin, J. G.; Luo, S. N.; Chen, C. Q.; Qiu, L.; Wang, Y.; Cheng, W.; Ye, W. Z.; Xia, Y. M. Appl. Radiat. Isotopes. 2010, 68, 1616.   DOI   ScienceOn
18 Wang, Y.; Luo, S. N.; Lin, J. G.; Qiu, L.; Cheng, W.; Zhai, H. Z.; Nan, B. B.; Ye, W. Z.; Xia, Y. Y. Appl. Radiat. Isotopes. 2011, 69, 1169.   DOI   ScienceOn
19 Lin, J. G.; Qiu, L.; Cheng, W.; Luo, S. N.; Ye, W. Z. Nucl. Med. Biol. 2011, 38, 619.   DOI   ScienceOn
20 Qiu, L.; Cheng, W.; Lin, J. G.; Luo, S. N.; Xue, L. Molecules 2011, 16, 6165.   DOI
21 Lin, J. G.; Qiu, L.; Cheng, W.; Luo, S. N.; Xue, L.; Zhang, S. Appl. Radiat. Isotopes. 2012, 70, 848.   DOI   ScienceOn
22 Archimandritis, S. C.; Tsolis, A. K. Eur. J. Nucl. Med. 1987, 13, 134.   DOI
23 Qiu, L.; Lin, J. G.; Gong, X. D.; Ju, X. H.; Luo, S. N. B. Korean Chem. Soc. 2011, 32, 2358.   DOI   ScienceOn
24 Lu, G. X.; Chen, H. Y. Nucl. Tech. 1999, 22, 682.
25 Chen, K. X.; Jiang, H. L.; Ji, R. Y. Computer Aided Drug Design: Principles, Methods and Applications; Shanghai Scientific and Technology Press: Shanghai, 2000.
26 Qiu, L.; Lin, J. G.; Ju, X. H.; Gong, X. D.; Luo, S. N. Chinese J. Chem. Phys. 2011, 24, 295.
27 Fan, H. J.; Hall, M. B. Organometallics 2001, 20, 5724.   DOI   ScienceOn
28 Safi, B.; Mertens, J.; Proft, F. D.; Alberto, R.; Geerlings, P. J. Phys. Chem. A 2005, 109, 1944.   DOI   ScienceOn
29 Safi, B.; Mertens, J.; Proft, F. D.; Alberto, R.; Geerlings, P. J. Phys. Chem. A 2006, 110, 9240.   DOI   ScienceOn
30 Cundari, T. R.; Grimes, T. V.; Gunnoe, T. B. J. Am. Chem. Soc. 2007, 129, 13172.   DOI   ScienceOn
31 Riedel, S.; Renz, M.; Kaupp, M. Inorg. Chem. 2007, 46, 5734.   DOI   ScienceOn
32 Haunschild, R.; Frenking, G. J. Organomet. Chem. 2008, 693, 3627.   DOI   ScienceOn
33 Safi, B.; Mertens, J.; Kersemans, K.; Geerlings, P. Nucl. Med. Biol. 2008, 35, 747.   DOI   ScienceOn
34 Jia, H. M.; Fang, D. C.; Feng, Y.; Zhang, J. Y.; Fan, W. B.; Zhu, L. Theor. Chem. Account. 2008, 121, 271.   DOI
35 Ess, D. H. J. Org. Chem. 2009, 74, 1498.   DOI   ScienceOn
36 Saeki, M.; Sasaki, Y.; Nakai, A.; Ohashi, A.; Banerjee, D.; Scheinost, A.; Foerstendorf, H. Inorg. Chem. 2012, 51, 5814.   DOI   ScienceOn
37 Materials Studio 3.0.1; Accelrys Inc.: San Diego, CA, 2004.
38 Jurisson, S.; Berning, D.; Jia, W.; Ma, D. S. Chem. Rev. 1993, 93, 1137.   DOI   ScienceOn
39 Subramanian, G.; McAfee, J. G.; Blair, R. J.; Mehter, A.; Connor, T. J. Nucl. Med. 1972, 13, 947.
40 Libson, K.; Deutsch, E.; Barnett, B. L. J. Am. Chem. Soc. 1980, 102, 2476.   DOI
41 Rappe, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard, W. A.; Skiff, W. M. J. Am. Chem. Soc. 1992, 114, 10024.   DOI
42 Becke, A. D. J. Chem. Phys. 1993, 98, 5648.   DOI   ScienceOn
43 Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.   DOI   ScienceOn
44 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Revision C.02; Gaussian, Inc.: Wallingford, CT, 2004.
45 Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299.   DOI
46 Dunning, T. H., Jr.; Hay, P. J. Modern Theoretical Chemistry, Schaefer, H. F., III, Ed.; Plenum: New York, 1976; Vol. 3, p 1.
47 Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 270.   DOI
48 HyperChem, release 7.5; Hypercube Inc.: NewYork, 2003.
49 Mulliken, R. S. J. Chem. Phys. 1955, 23, 1833.   DOI
50 GaussView, release 3.0; Gaussian Inc.: Pittsburgh, PA, 2003.
51 Thomas. R. W.; Estes, G. W.; Elder, R. C.; Deutsch, E. J. Am. Chem. Soc. 1979, 101, 4581.   DOI
52 Turki, M.; Daniel, C.; Stufkens, D. J. J. Am. Chem. Soc. 2001, 123, 11431.   DOI   ScienceOn
53 DeLaMatter, D.; McCullough, J. J.; Calvo, C. J. Phys. Chem. 1973, 77, 1146.   DOI
54 Uchtman, V. A.; Gloss, R. A. J. Phys. Chem. 1972, 76, 1298.   DOI
55 Uchtman, V. A. J. Phys. Chem. 1972, 76, 1304.   DOI
56 Rasanen, J. P.; Pohjala, E.; Nikander, H.; Pakkanen, T. A. J. Phys. Chem. A 1997, 101, 5196.   DOI   ScienceOn
57 Alberto, R.; Schibli, R.;,Waibel, R.; Abram,U.; Schubiger, P. A. Coord. Chem. Rev. 1999, 190-192, 901.   DOI   ScienceOn
58 Schaffer, C. E. Inorg. Chim. Acta 2000, 300-302, 1035.   DOI   ScienceOn
59 Pauling, L. C. In The Nature of the Chemical Bond, 3rd ed.; Cornell University Press: Ithaca, NY, 1960; p 172.
60 Fleisch, H.; Russell, R. G. G.; Straumann, F. Nature 1966, 26, 901.
61 Fukui, K. Theory of Orientation and Stereoselection, Reactivity and Structure, Concepts in Organic Chemistry; Springer: Berlin, 1975, Vol. 2.