Browse > Article
http://dx.doi.org/10.5012/bkcs.2012.33.12.4059

Effect of Conductive Additives on the Structural and Electrochemical Properties of Li4Ti5O12 Spinel  

Park, Jae-Hwan (Graduate School of Green Energy Technology, Chungnam National Uniersity)
Lee, Seongsu (Neutron Science Division, Korea Atomic Energy Research Institute)
Kim, Sung-Soo (Graduate School of Green Energy Technology, Chungnam National Uniersity)
Kim, Jong-Huy (Korea Institute of Energy Research)
Publication Information
Abstract
The effect of a conductive agent on the structural and electrochemical properties of $Li_4Ti_5O_{12}$(LTO) spinel was investigated through neutron diffraction during Li intercalation and electrochemical measurements. The charging process of LTO is known as transformation of the white $(Li_3)_{8a}[LiTi_5]_{16d}O_{12}$ into a dark-colored $(Li_{3-X})_{8a}[Li_{X+Y}]_{16c}[LiTi_5]_{16d}O_{12}$ by incorporating the inserted Li into octahedral 16c sites, and the Li in tetrahedral 8a sites shifted to 16c sites. The occupancy of the tetrahedral 8a site varied with the existence of carbon in the electrode. Without carbon, the lattice parameter and cell volume of LTO decreased more notably than in the carbon-containing LTO electrode during Li insertion process. These phenomena might be attributed that the Li occupancy of the tetrahedral 8a of the LTO electrode without carbon was less than that of the carbon-containing LTO electrode.
Keywords
Lithium ion batteries; Lithium titanate; Carbon additive effect; Neutron diffraction;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kavan, L.; Prochazka, J.; Spitler, T. M.; Kalbac, M.; Jukalova, M.; Drezen, T.; Gratzel, M. J. Electrochem. Soc. 2003, 150, A1000.   DOI   ScienceOn
2 Belharouak, I.; Sun, Y.-K.; Lu, W.; Lin, J.; Amine, K. J. Electrochem. Soc. 2007, 154, A1083.   DOI   ScienceOn
3 Takami, N.; Inagaki, H.; Kishi, T.; Harada, Y.; Fujita, Y.; Hoshina, K. J. Electrochem. Soc. 2009, 156, A128.   DOI   ScienceOn
4 Ohzuku, T.; Ueda, A.; Yamamoto, N. J. Electrochem. Soc. 1995, 142, 1431.   DOI
5 Scharner, S.; Weppner, W.; Beaurmann, P. S. J. Electrochem. Soc. 1999, 146, 857.   DOI   ScienceOn
6 Leonidov, I. A.; Leonidova, O. N.; Perelyaeva, L. A.; Samigullina, R. F.; Kovyazina, S. A.; Patrakeev, M. V. Phys. Solid State 2003, 45, 2183.   DOI
7 Chen, C. H.; Vaughey, J. T.; Jansen, A. N.; Dees, D. W.; Kahaian, A. J.; Goacher, T.; Thackeray, M. M. J. Electrochem. Soc. 2001, 148, 103.   DOI   ScienceOn
8 Borghols, W. J. H.; Wagemaker, M.; Lafont, U.; Kelder, E. M.; Mulder, F. M. J. Am. Chem. Soc. 2009, 131, 17786.   DOI   ScienceOn
9 Rodriguez-Carvajal, J. Physica B 1993, 55, 192.
10 Wagemaker, M.; Simon, D. R.; Kelder, E. M.; Schoonman, J.; Ringpfeil, C.; Haake, U.; Hecht, D. L.; Frahm, R.; Mulder, F. M. Adv. Mater. 2006, 18, 3169.   DOI   ScienceOn
11 Wagemaker, M.; van Eck, E. R. H.; Kentgens, A. P. M.; Mulder, F. M. J. Phys. Chem. B 2009, 113, 224.   DOI   ScienceOn
12 Ouyang, C. Y.; Zhong, Z. Y.; Lei, M. S. Electrochem. Commun. 2007, 9, 1107.   DOI   ScienceOn