Browse > Article
http://dx.doi.org/10.5012/bkcs.2010.31.9.2503

Growth and Characterization of Conducting ZnO Thin Films by Atomic Layer Deposition  

Min, Yo-Sep (Department of Chemical Engineering, Konkuk University)
An, Cheng-Jin (Department of Chemical Engineering, Konkuk University)
Kim, Seong-Keun (WCU Hybrid Materials Program, Department of Materials Science and Engineering and Inter-university Semiconductor Research Center, Seoul National University)
Song, Jae-Won (WCU Hybrid Materials Program, Department of Materials Science and Engineering and Inter-university Semiconductor Research Center, Seoul National University)
Hwang, Cheol-Seong (WCU Hybrid Materials Program, Department of Materials Science and Engineering and Inter-university Semiconductor Research Center, Seoul National University)
Publication Information
Abstract
ZnO thin films were grown on Si or $SiO_2$/Si substrates, at growth temperatures ranging from 150 to $400^{\circ}C$, by atomic layer deposition (ALD) using diethylzinc and water. Despite the large band gap of 3.3 eV, the ALD ZnO films show high n-type conductivity, i.e. low resistivity in the order of $10^{-3}\;{\Omega}cm$. In order to understand the high conductivity of ALD ZnO films, the films were characterized with X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, elastic recoil detection, Rutherford backscattering, Photoluminescence, and Raman spectroscopy. In addition, the various analytical data of the ZnO films were compared with those of ZnO single crystal. According to our analytical data, metallic zinc plays an important role for the high conductivity in ALD ZnO films. Therefore when the metallic zinc was additionally oxidized with ozone by a modified ALD sequence, the resistivity of ZnO films could be adjusted in a range of $3.8{\times}10^{-3}\;{\sim}\;19.0\;{\Omega}cm$ depending on the exposure time of ozone.
Keywords
ZnO; Conducting; Atomic layer deposition; Thin film;
Citations & Related Records

Times Cited By Web Of Science : 4  (Related Records In Web of Science)
Times Cited By SCOPUS : 2
연도 인용수 순위
1 Yamada, A.; Sang, B.; Konagai, M. Appl. Surf. Sci. 1997, 112, 216.   DOI   ScienceOn
2 Kaiya, K.; Yoshii, N.; Omichi, K.; Takahashi, N.; Nakamura, T.; Okamoto, S.; Yamamoto, H. Chem. Mater. 2001, 13, 1952.   DOI
3 Park, S. H.; Lee, Y. E. J. Mater. Sci. 2004, 39, 2195.   DOI
4 Kim, S. K.; Hwang, C. S.; Park, S. H.; Yun, S. J. Thin Solid Films 2005, 478, 103.   DOI
5 Wagner, C. D.; Naumkin, A. V.; Kraut-Vass, A.; Allison, J. W.; Powell, C. J.; Rumble, J. R., Jr. NIST X-ray Photoelectron Spectroscopy Database, available in http://srdata.nist.gov/xps/.
6 Vanheusden, K.; Warren, W. L.; Seager, C. H.; Tallant, D. R.; Voigt, J. A.; Gnade, B. E. J. Appl. Phys. 1996, 79, 7983.   DOI
7 Vanheusden, K.; Seager, C. H.; Warren, W. L.; Tallant, D. R.; Voigt, J. A. Appl. Phys. Lett. 1996, 68, 403.   DOI
8 Leiter, F. H.; Alves, H. R.; Hofstaetter, A.; Hofmann, D. M.; Meyer, B. K. Phys. Stat. Sol. B 2001, 226, R4.   DOI
9 Lim, J.; Shin, K.; Kim, H. W.; Lee, C. J. Lumin. 2004, 109, 181.   DOI
10 Damen, T. C.; Proto, S. P. S.; Tell, B. Phys. Rev. 1966, 142, 570.   DOI
11 Zhaochun, Z.; Baibiao, H.; Yongqin, Y.; Deliang, C. Mater. Sci. Engin. B 2001, 86, 109.   DOI
12 Cui, J. B.; Daghlian, C. P.; Gibson, U. J.; Pusche, R.; Geithner, P.; Ley, L. J. Appl. Phys. 2005, 97, 044315.   DOI
13 Van de Walle, C. G. Phys. Rev. Lett. 2000, 85, 1012.   DOI
14 Maeda, K.; Sato, M.; Niikura, I.; Fukuda, T. Semicond. Sci. Technol. 2005, 20, S49.   DOI
15 Kohiki, S.; Nishitani, M.; Wada, T.; Hirao, T. Appl. Phys. Lett. 1994, 64, 2876.   DOI
16 Heiland, G.; Mollwo, E.; Stockmann, F. In Solid State Physics; Seitz, F., Turnbull, D., Eds.; Academic: New York, 1959; Vol. 8, p 191.
17 Look, D. C.; Hemsky, J. W.; Sizelove, J. R. Phys. Rev. Lett. 1999, 82, 2552.   DOI
18 Janotti, A.; Van de Walle, C. G. Appl. Phys. Lett. 2005, 87, 122102.   DOI
19 Chen, L. Y.; Chen, W. H.; Wang, J. J.; Hong, F. C. N.; Su, Y. K. Appl. Phys. Lett. 2004, 85, 5628.   DOI
20 CRC Handbook of Chemistry and Physics; CRC Press: Boca Raton, FL, 2005.
21 Birkholz, M.; Selle, B.; Fenske, F.; Fuhs, W. Phys. Rev. B 2003, 68, 205414.   DOI
22 Littbarski, R. In Zinc Oxide; Hirschwald, W., Ed.; North-Holland: Amsterdam, 1981; Vol. 7, p 212.
23 Lee, S.; Im, Y. H.; Kim, S. H.; Hahn, Y. B. Supperlattice Microst. 2006, 39, 24.   DOI
24 Suntola, T. In Handbook of Crystal Growth; Hurle, D. T. J., Ed.; Elsevier: Amsterdam, 1994; Chapt. 3, p 601.
25 Lee, J. M.; Kim, K. K.; Park, S.-J.; Choi, W.-K. Appl. Phys. Lett. 2001, 78, 3842.   DOI
26 Hirschwald, W. H. Acc. Chem. Res. 1985, 18, 228.   DOI
27 Zhang, S. B.; Wei, S.-H.; Zunger, A. Phys. Rev. B 2001, 63, 75205.   DOI
28 Tan, S. T.; Chen, B. J.; Sun, X. W.; Yu, M. B.; Zhang, X. H.; Chua, S. J. J. Electron. Mater. 2005, 34, 1172.   DOI
29 Ozgur, U.; Alivov, Y. I.; Teke, L. A.; Reshchikov, M. A.; Dogan, S.; Avrutin, V.; Cho, S. J.; Morkoc, H. J. Appl. Phys. 2005, 98, 041301.   DOI
30 Ellmer, K. J. Phys. D: Appl. Phys. 2001, 34, 3097.   DOI
31 Pearton, S. J.; Norton, D. P.; Ip, K.; Heo, Y. W. J. Vac. Sci. Technol. B 2004, 22, 932.   DOI
32 Wang, Z. L. Materials Today 2004, 6, 26.
33 Studenikin, S. A.; Golego, N.; Cocivera, M. J. Appl. Phys. 1998, 84, 2287.   DOI
34 Zhang, Y.; Zhang, Z.; Lin, B.; Fu, Z.; Xu, J. J. Phys. Chem. B 2005, 109, 19200.   DOI
35 Carcia, P. F.; McLean, R. S.; Reilly, M. H.; Nunes, G., Jr. Appl. Phys. Lett. 2003, 82, 1117.   DOI
36 Ortega-Lopez, M.; Avila-Garcia, A.; Albor-Aguilera, M. L.; Sanchez Resendiz, V. M. Mater. Res. Bull. 2003, 38, 1241.   DOI
37 Zhang, Y.; Du, G.; Yang, X.; Zhao, B.; Ma, Y.; Yang, T.; Ong, H. C.; Liu, D.; Yang, S. Semicond. Sci. Technol. 2004, 19, 755.   DOI
38 Lujala, V.; Skarp, J.; Tammenmaa, M.; Suntola, T. Appl. Surf. Sci. 1994, 82/83, 34.   DOI