Browse > Article
http://dx.doi.org/10.5012/bkcs.2009.30.7.1543

AC Conductivity Studies of Polyaniline-polymannuronate Nanocomposites  

Basavaraja, C. (Department of Chemistry and Institute of Functional Material, Inje University)
Kim, Na-Ri (Department of Chemistry and Institute of Functional Material, Inje University)
Jo, Eun-Ae (Department of Chemistry and Institute of Functional Material, Inje University)
Pierson, R. (Department of Chemistry and Institute of Functional Material, Inje University)
Huh, Do-Sung (Department of Chemistry and Institute of Functional Material, Inje University)
Publication Information
Abstract
Temperature and frequency dependent AC conductivity behavior has been studied for the chemically synthesized polyaniline-polymannuronate (PANI-PM) composites. The temperature (300 - 500 K) and frequency (100 - $10^6$ Hz) dependent AC conductivity suggests evidence for the transport mechanism in PANI-PM composites. The frequency dependence of AC conductivity has been investigated by the power law. The frequency exponent (s) is determined, and the data suggest that s decreases with temperature. The variation of s with temperature suggests that AC conduction is due to the correlated barrier hopping.
Keywords
Polyaniline; Polymannuronate; Conductivity; Nano-composite; Nanoscopic textures;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 3
연도 인용수 순위
1 Cha, S. H.; Kim, J. U.; Lee, J. C. Macromol. Res. 2008, 16, 711   DOI   ScienceOn
2 El-Sherif, M. E.; Yuan, J.; MacDiarmid, A. G. J. Intell. Mater. Syst. Struct. 2000, 11, 407   DOI
3 Mallik, H.; Sarkar, A. J. Non-Cryst. Solid. 2006, 352, 795   DOI   ScienceOn
4 Tiwari, A. J. Poly. Res. 2008, 15, 337   DOI   ScienceOn
5 Prakash, O.; Mandal, K. D.; Christopher, C. C.; Sastry, M. S.; Kumar, D. J. Mater. Sci. 1996, 31, 4705   DOI   ScienceOn
6 Birey, H. J. Appl. Phys. 1978, 49, 2898   DOI   ScienceOn
7 Mott, N. F.; Davis, E. A. Electronic, Processes I Non Crystalline Materials, 2nd Ed.; Oxford Clarendon: London, 1979
8 Long, A. R. Adv. Phys. 1982, 31, 553   DOI   ScienceOn
9 Elliott, S. R. Adv. Phys. 1987, 36, 135   DOI   ScienceOn
10 Dyre, J. J. Appl. Phys. 1988, 64, 2456   DOI
11 Long, A. R. Adv. Phys. 1982, 31, 553   DOI   ScienceOn
12 Elliott, S. R. Adv. Phys. 1987, 36, 135   DOI   ScienceOn
13 Efros, A. L. Philos. Mag. B 1981, 43, 829   DOI
14 Ghosh, M.; Barman, A.; De, S. K.; Chatterjee, S. J. Appl. Phys. 1998, 84, 806   DOI   ScienceOn
15 Basavaraja, C.; Veeranagouda, Y.; Lee, K.; Pierson, R.; Huh, D. S. J. Poly. Sci. B: Poly. Phys. 2009, 47, 36   DOI   ScienceOn
16 Basavaraja, C.; Veeranagouda, Y.; Lee, K.; Pierson, R.; Huh, D. S. Bull. Korean Chem. Soc. 2008, 29, 1
17 Levi, B. G. Phys. Today 2000, 53, 19
18 MacDiarmid, A. G. Angew. Chem. Int. Ed. 2001, 40, 2581   DOI   ScienceOn
19 Jin, Z.; Su, Y.; Duan, Y. Sens. Actuators B 2001, 72, 75   DOI   ScienceOn
20 Sotomayor, P. T.; Raimurdo, I. M.; Jr, A.; Zarbin, J. G.; Rohwedder, J. J. R.; Netto, G. O.; Alves, O. L. Sens. Actuators B 2001, 74, 157   DOI   ScienceOn
21 Kane-Maguire, L. A. P.; Wallsce, G. G. Synth. Met. 2001, 119, 39   DOI   ScienceOn
22 Hamers, R. J. Nature 2001, 412, 489   DOI   ScienceOn
23 Rosseinsky, D. R.; Mortimer, R. J. Adv. Mater. 2001, 13, 783   DOI
24 Kim, G. H. Macromol. Res. 2004, 12, 564   DOI   ScienceOn