Browse > Article
http://dx.doi.org/10.5012/bkcs.2009.30.4.907

Spatial Symmetry Breaking in the Revival Wave of the Belousov-Zhabotinsky Reaction Containing 1,4-Cyclohexanedione  

Basavaraja, C. (Department of Chemistry and Institute of Functional Material, Inje University)
Kim, Na-Ri (Department of Chemistry and Institute of Functional Material, Inje University)
Park, Hyun-Tae (Department of Chemistry and Institute of Functional Material, Inje University)
Huh, Do-Sung (Department of Chemistry and Institute of Functional Material, Inje University)
Publication Information
Abstract
Complex breakup behavior in the revival wave has been observed in the Belousov-Zhabotinsky(BZ) reaction system containing 1,4-cyclohexanedione (1,4-CHD) in the dish divided into two compartments with a sliding window. A same reaction mixture is poured into the two compartments individually with time difference. Wave propagation exhibited different behavior in the revival wave of the reaction system. This was largely dependent on the progress time prior to the pouring into each compartment and on the gap between the times of pouring into the two compartments. The revival wave in the reaction system is induced spontaneously as a new wave train with a long time lag after the disappearance of the initially induced wave. A thoroughgoing study of the chaotic breakup of propagating chemical wave train was to be possible since the revival wave has a longer wavelength, clearer wave-train patterns, and longer duration period.
Keywords
BZ-Reaction; Chaotic breakup; Divided-dish; Reaction-diffusion; Revival wave;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 2  (Related Records In Web of Science)
Times Cited By SCOPUS : 2
연도 인용수 순위
1 Showalter, K. J. Chem. Phys. 1980, 73, 3735.   DOI
2 Cantrell, R. S. SIAM Rev. 1996, 38, 256.   DOI   ScienceOn
3 Handbook of Crystal Growth; Hurle, D. T. J., Ed.; North-Holland: Amsterdam, 1993; Vol. 1B.
4 The Theory and Applications of Reaction-diffusion Equations: Patterns and Waves; Grindrod, P., Ed.; Clarendon Press: Oxford, 1996.
5 Diffusion and Reactions in Fractals and Disordered Systems; Ben-Avraham, D.; Havlin, S., Eds.; Cambridge University Press: Cambridge, 2000.
6 Winfree, A. T. Science 1972, 175, 634.   DOI   ScienceOn
7 Paoletti, M. S.; Solomon, T. H. Europhys. Lett. 2005, 69, 819.   DOI   ScienceOn
8 Chemical Waves and Patterns; Kapral, R.; Showalter, K., Eds.; Kluwer Academic Publishers: Dordrecht, 1995
9 Zaikin, N.; Zhabotinsky, A. M. Nature 1970, 225, 535.
10 Manz, N.; Ginn, B. T.; Steinbock, O. Phys. Rev. E 2006, 73, 66218.   DOI
11 Steinbock, O.; Muller, S. C. Z. Naturforsch. C 1995, 50, 275.
12 Spatio-Temporal Pattern Formation; Walgraef, D., Ed.; Springer: New York, 1997.
13 Leconte, M.; Martin, J.; Rakotomalala, N.; Salin, D. Phys. Rev. Lett. 2003, 90, 128302.   DOI   ScienceOn
14 Nugent, C. R.; Quarles, W. M.; Solomon, T. H. Phys. Rev. Lett. 2004, 93, 218301.   DOI   ScienceOn
15 Mathematical Biology; Murray, J. D., Ed.; Springer-Verlag: Berlin, 1989.
16 Self-Organized Biological Dynamics & Nonlinear Control; Walleczek, J., Ed.; Cambridge University Press: Cambridge, 2000.
17 Neufeld, Z.; Kiss, I. Z.; Zhou, C. S.; Kurths, J. Phys. Rev. Lett. 2003, 91, 084101.   DOI   ScienceOn
18 Orban, M. J. Am. Chem. Soc. 1980, 102, 4311-4314.   DOI
19 Oscillations and Travelling Waves in Chemical Systems; Field, R. J.; Burger, M., Eds.; Wiley: New York, 1985.
20 An Introduction to Non-linear Chemical Dynamics; Epstein, I. R.; Pojman, J. A., Eds.; Oxford University Press: New York, 1998.
21 Scheuring, I.; Karolyi, G.; Pentek, T. T. A.; Toroczkai, Z. Freshwater Biol. 2000, 45,123.   DOI   ScienceOn
22 Abel, M.; Celani, A.; Vergni, D.; Vulpiani, A. Phys. Rev. E 2001, 64, 046307.   DOI
23 Abel, M.; Cencini, M.; Vergni, D.; Vulpiani, A. Chaos 2002, 12, 481.   DOI   ScienceOn
24 Cencini, M.; Torcini, A.; Vergni, D.; Vulpiani, A. Phys. Fluids 2003, 15, 679.   DOI   ScienceOn
25 Tel, T.; de Moura, A.; Grebogi, C.; Karolyi, G. Phys. Rep. 2005, 413, 91.   DOI   ScienceOn
26 Ronney, P. D.; Haslam, B. D.; Rhys, N. O. Phys. Rev. Lett. 1995, 74, 3804.   DOI   ScienceOn
27 Ackemann, T.; Lange, W. Appl. Phys. B 2001, 72, 21.
28 Nonlinear Evolution of Spatio-Temporal Structures in Dissipative Continuous Systems; Busse, F. H.; Kramer, L., Eds.; Plenum Press: New York, 1990.
29 Li, Y. J.; Oslonovitch, J.; Mazouz, N.; Plenge, F.; Krischer, K.; Ertl, G. Science 2001, 291, 2395.   DOI   ScienceOn
30 Nonlinear Spatio-Temporal Dynamics and Chaos in Semiconductors; Scholl, E., Ed.; Cambridge University Press: Cambridge, 2001.
31 Umbanhowar, P. B.; Melo, F.; Swinney, H. L. Nature 1996, 382, 793.   DOI   ScienceOn
32 Hydrodynamic and Hydromagnetic Stability; Chandrasekhar, S., Ed.; Oxford University Press: London, 1961
33 Winfree, T. J. Biosci. 2002, 27, 465.   DOI   ScienceOn
34 Dahlem, M. A., Ph.D. thesis; Otto-von-Guericke-Universitat Magdeburg, 2000.
35 Biochemical Oscillations and Cellular Rhythms; Goldbeter, A., Ed.; Cambridge University Press: Cambridge, 1996.
36 The Self-Made Tapestry: Pattern Formation in Nature; Ball, P., Ed.; Oxford University Press: Oxford, 1999.
37 Huh, D. S.; Kim, Y. J.; Choe, S. J. Bull. Korean Chem. Soc. 2004, 25(2), 267.   DOI   ScienceOn
38 Huh, D. S.; Choe, S. J.; Kim, M. S. React. Kinet. Catal. Lett. 2001, 74, 11.   DOI   ScienceOn
39 Huh, D. S.; Kim, M. S.; Choe, S. J. Bull. Korean Chem. Soc. 2001, 22, 867
40 Huh, D. S.; Kim, Y. J.; Wang, J. Phys. Chem. Chem. Phys. 2003, 5, 3188.   DOI   ScienceOn
41 Manz, N.; Ginn, B. T.; Steinbock, O. Phys. Rev. E 2006, 73, 066218, 1-4.
42 Bansagi, T.; Palczewski, C.; Steinbock, O. J. Phys. Chem. A 2007, 111, 2492-2497.   DOI   ScienceOn
43 Agladze, K.; Thouvenel-Romans, S.; Steinbock, O. Phys. Chem. Chem. Phys. 2001, 3, 1326-1330   DOI   ScienceOn
44 Hamik, C. T.; Manz, N.; Steinbock, O. J. Phys. Chem. A 2001, 105, 6144-6153.   DOI   ScienceOn
45 Diewald, M.; Brand, H. R. Phys. Rev. E 1995, 51, R5200.   DOI   ScienceOn