Browse > Article
http://dx.doi.org/10.5012/bkcs.2009.30.10.2253

Process Optimization for Preparing High Performance PAN-based Carbon Fibers  

Yun, Jeong-Hyeon (Faculty of Applied Chemical Engineering and Alan G. MacDiarmid Energy Research Institute (AMERI), Chonnam National University)
Kim, Bo-Hye (Faculty of Applied Chemical Engineering and Alan G. MacDiarmid Energy Research Institute (AMERI), Chonnam National University)
Yang, Kap-Seung (Faculty of Applied Chemical Engineering and Alan G. MacDiarmid Energy Research Institute (AMERI), Chonnam National University)
Bang, Yun-Hyuk (R&D Business Labs, Hyosung Corporation)
Kim, Sung-Ryong (R&D Business Labs, Hyosung Corporation)
Woo, Hee-Gweon (Alan G. MacDiarmid Energy Research Institute (AMERI), Nanotechnology Research Center (NTRC) and Department of Chemistry, Chonnam National University)
Publication Information
Abstract
wet spun polyacrylonitrile (PAN) fiber precursors. The process variables chosen were treatment temperature, applied tension in stabilization process. The temperature profile of the stabilization was set on the basis of exothermic peaks of the differential scanning calorimetry (DSC) result. Both tensile strength and modulus increased with holding at onset temperatures of the exothermic peaks for extended duration, and with a higher heating rate up to the onset temperatures at a given applied tension among the experimental conditions. The increase in load monotonously increased the tensile modulus, on the other hand, the tensile strength was maximum at the load of 15 mg/filament (T15). The load 20 mg/ filament (T20) was considered to be exceeded to form oriented crystalline structure, possibly introducing more defects in the fiber than under load of T15. The sample CP3-T15 O5 H30 showed the best tensile properties among the samples experimented whose tensile properties are compatible with the commercialized grade of general purpose carbon fibers even at low carbonization temperature such as $800\;{^{\circ}C}$ (the carbonization temperature in the commercial process. 1300∼$1500\;{^{\circ}C}$).
Keywords
Carbon fiber; Stabilization; Carbonization; Tension; Tensile strength;
Citations & Related Records

Times Cited By Web Of Science : 2  (Related Records In Web of Science)
Times Cited By SCOPUS : 3
연도 인용수 순위
1 Gupta, A.; Harrison, I. R. Carbon 1996, 34, 1427.   DOI   ScienceOn
2 Gupta, A. K.; Paliwal, D. K.; Bajaj, P. J. Macromol. Sci., Rev. Macromol. Chem. Phys. 1991, C31, 1.
3 Serkov, A.; Budnitskii, G.; Radishevskii, M.; Medvedev, V.; Zlatoustova, L. Fibre Chem. 2003, 35, 117.   DOI   ScienceOn
4 Perepelkin, K. E. Fibre Chem. 2003, 35, 409.   DOI   ScienceOn
5 Peebles, L. Carbon Fibres; CRC Press: Boca Raton, 1995; pp 7-26.
6 Bahl, O.; Shen, Z.; Lavin, J.; Ross, R. Manufacturing of Carbon Fibres, in Carbon Fibres; Donnet, J. B.; Wang, T.; Peng, J.; Reboyillat, S., Eds.; Marcel Dekker: New York, 1998; pp 1-19.
7 Gupta, A.; Harrison, I. R. Carbon 1996, 34, 1427.   DOI   ScienceOn
8 Chung, D. L. Carbon Fiber Composites; Butterworth-Heinemann, 1994; pp 1-64.
9 Bajaj, P.; Roopanwal, A. K. J. Macromol. Sci., Rev. Macromol. Chem. Phys. 1997, C37, 97.
10 Dalton, S.; Heatley, F.; Budd, P. M. Polymer 1999, 40, 5531.   DOI   ScienceOn
11 Zhang, W. X.; Wang, Y. Z. J. Appl. Polym. Sci. 2002, 85, 153.   DOI   ScienceOn
12 Jin, D.; Huang, Y.; Liu, X.; Yu, Y. J. Mater. Sci. 2004, 39, 3365.   DOI   ScienceOn
13 Sung, M. G.; Sassa, K.; Tagawa, T.; Miyata, T.; Ogawa, H.; Doyama, M. Carbon 2002, 40, 2013.   DOI   ScienceOn
14 Fitzer, E.; Mueller, D. J. Makromol. Chem. 1971, 144, 117.   DOI
15 Fitzer, E.; Frohs, W.; Heine, M. Carbon 1986, 24, 387   DOI   ScienceOn
16 Mueller, D. J.; Fitazer, E.; Fiedler, A. K. Proceedings of the International Conference on Carbon Fibres, their Composites and Applications; London, paper 2, 1971; pp 1.
17 Manocha, L. M.; Bahl, O. P.; Jain, G. C. Angew. Makromol. Chem. 1978, 67, 11.   DOI
18 Soulis, S.; Simitzis, J. Polym. Int. 2005, 54, 1474.   DOI   ScienceOn
19 Wang, P. H. J. Appl Polym. Sci. 1998, 67, 1185.   DOI   ScienceOn
20 Nascar, A. K.; Walker, R. A.; Proulx, S.; Edie, D. D.; Ogale, A. A. Carbon 2005, 43, 1065.   DOI   ScienceOn
21 Fitzer, E.; Mueller, D. J. Chemiker- Zeitung 1972, 96, 20.
22 Bajaj, P.; Roopanwal, A. K. J. Macromol. Sci., Rev. Macromol. Chem. Phys. 1997, C37, 97
23 Hinrici-Olive, G.; Olive, S. Adv. Polym. Sci. 1983, 51, 1.   DOI
24 Mueller, D. J.; Fitazer, E.; Fiedler, A. K. Proceedings of the International Conference on Carbon Fibres, their Composites and Applications; London, paper 2, 1971; pp 1.
25 Spyridon, S.; Johannis, S. Polym. Int. 2005, 54, 1474   DOI   ScienceOn
26 Bajaj, P.; Roopanwal, A. K. J. Macromol. Sci., Rev. Macromol. Chem. Phys. 1997, C37, 97.
27 Hinrici-Olive, G.; Olive, S. Adv. Polym. Sci. 1983, 51, 1.   DOI
28 Tagawa, T.; Miyata, T. Materials Science and Engineering 1997, A238, 336.
29 Chen, J. C.; Harrison, I. R. Carbon 2002, 40, 25.   DOI   ScienceOn
30 Honjo, K. Carbon 2003, 41, 979.   DOI   ScienceOn
31 Sung, M.-G.; Kawabata, Y. Materials Science and Engineering 2008, A488, 247.
32 Spyridon, S.; Johannis, S. Polym. Int. 2005, 54, 1474.   DOI   ScienceOn
33 Johannis, S.; Spyridon, S. Polym. Int. 2008, 57, 99.   DOI   ScienceOn