Browse > Article
http://dx.doi.org/10.5012/bkcs.2008.29.5.1051

Nonlinear Entropy Production in a Reversible Oregonator Model  

Basavaraja, C. (Department of Chemistry and Institute of Functional Materials, Inje University)
Pierson, R. (Department of Chemistry and Institute of Functional Materials, Inje University)
Park, Seung-Hyun (Department of Chemistry and Institute of Functional Materials, Inje University)
Jeon, Eun-Ji (Department of Chemistry and Institute of Functional Materials, Inje University)
Huh, Do-Sung (Department of Chemistry and Institute of Functional Materials, Inje University)
Publication Information
Abstract
The entropy production in a non-equilibrium state based on the reversible Oregonator model of the Belousov-Zhabotinskii (BZ) reaction system has been studied. The reaction affinity and the reaction rate for the individual steps have been calculated by varying the concentrations of key variables in the system. The result shows a linear relationship between the reaction affinity and the reaction rate in the given concentration range. However, the overall entropy calculated on the basic assumption that the entropy in a reaction system corresponds to the summation of a product of reaction affinity and reaction rate of individual steps shows a nonlinearity of the reaction system. The results well agrees with the fact that the entropy production is not linear or complicated function in a non-linear reaction system.
Keywords
Affinity; Entropy; Fluctuation; Oregonetor; Reaction rate
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 Benjamin, R.; Ross, J. J. Chem. Phys. 1988, 89(2), 1064   DOI
2 Kettunen, P.; Amemiya, T.; Ohmori, T.; Yamaguchi, T. Phys. Rev. E 1999, 60, 1512   DOI   ScienceOn
3 Basavaraja, C.; Kulkarni, V. R.; Vishnuvardhan, T. K.; Mohan, S.; Iyer, Y. M.; Subba Rao, G. V. Ind. J. Chem. 2005, 44, 1894
4 Basavaraja, C.; Bagchi, B.; Park, D. Y.; Choi, Y. M.; Park, H. T.; Choe, S. J.; Huh, D. S. Bull. Korean Chem. Soc. 2006, 27(10), 1525   DOI   ScienceOn
5 Basavaraja, C.; Huh, D. S.; Park, S. H.; Jeon, U. J.; Pierson, R.; Vishnuvardhan, T. K.; Kulkarni, V. R. Bull. Korean Chem. Soc. 2007, 28(9), 1489   DOI   ScienceOn
6 Dutt, A. K. J. Chem. Phys. 1999, 110(2), 1061   DOI   ScienceOn
7 Tyson, J. J. J. Phys. Chem. 1982, 86, 3006   DOI
8 Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P. Numerical Recipes in FORTRAN; The Art of Scientific Computing-Cambridge University Press: 1996; p 704
9 Ross, J.; Vlad, M. O. J. Phys. Chem. A 2005, 109, 10607   DOI   ScienceOn
10 Glansdorff, P.; Prigogine, I. Thermodynamic Theory of Structure, Stability and Functions; Wiley-Interscience: New York, 1971
11 Atkins, P.; de Paula, J. Physical Chemistry for the Life Sciences; Oxford University Press: UK, 2006
12 Gray, P.; Scott, S. K. Chemical Oscillations and Instabilities; Oxford; Clarendon Press: 1990
13 Belousov, B. P. In Oscillating Patterns and Traveling Waves in a Chemical System; Field, R. J.; Burger, M., Eds.; Wiley: New York, 1985
14 Field, R. J.; Noyes, R. M. J. Chem. Phys. 1974, 60, 1877   DOI