Browse > Article
http://dx.doi.org/10.5012/bkcs.2008.29.3.641

Transport Properties of Lennard-Jones Mixtures: A Molecular Dynamics Simulation Study  

Lee, Song-Hi (Department of Chemistry, Kyungsung University)
Publication Information
Abstract
Equilibrium molecular dynamics simulations in a canonical ensemble are performed to evaluate the transport coefficients of several Lennard-Jones (LJ) mixtures at a liquid argon states of 94.4 K and 1 atm via modified Green-Kubo formulas. Two component mixture of A and B is built by considering the interaction between A and A as the attractive (A) potential, that between A and B as the attractive potential (A), and that between B and B as the repulsive potential (R), labelled as AAR mixture. Three more mixtures - ARA, ARR, and RAR are created in the same way. The behavior of the LJ energy and the transport properties for all the mixtures is easily understood in terms of the portion of attractive potential (A %). The behavior of the thermal conductivities by the translational energy transport due to molecular motion exactly coincides with that of diffusion constant while that of the thermal conductivities by the potential energy transport due to molecular motion is easily understood from the fact that the LJ energy of AAR, ARR, and RAR mixtures increases negatively with the increase of A % from that of the pure repulsive system while that of ARA changes rarely.
Keywords
Diffusion; Shear viscosity; Thermal conductivity; Lennard-Jones mixtures; Molecular dynamics simulation
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 Gunton, J. D.; San Miguel, M.; Sahni, P. S. Phase Transitions and Critical Phenomena; Domb, C.; Lebowitz, J. L., Eds.; Academic: New York, 1983; Vol. 8
2 Gardner, P. J.; Heyes, D. M.; Preston, S. R. Molec. Phys. 1991, 73, 141   DOI   ScienceOn
3 Vogelsang, R.; Hoheisel, C.; Paolini, G. V.; Cicotti, G. Phys. Rev. A 1987, 36, 3964   DOI
4 Singer, J. V. L.; Singer, K. Molec. Phys. 1972, 24, 357   DOI   ScienceOn
5 McDonald, I. R. Molec. Phys. 1972, 23, 41   DOI   ScienceOn
6 Rotenberg, A. J. Chem. Phys. 1965, 43, 4377   DOI
7 Garzon, I. L.; Long, X. P.; Kawai, R.; Weare, J. H. Europhys. Lett. 1989, 158, 525
8 Ballone, P.; Andreoni, W.; Car, R.; Parrinello, M. Phys. Rev. Lett. 1989, 8, 73   DOI
9 Clarke, A. S.; Kapral, R.; Moore, B.; Patey, G.; Wu, X.-G. Phys. Rev. Lett. 1993, 70, 3283   DOI   ScienceOn
10 Evans, D. J. Phys. Rev. A 1981, 23, 1988   DOI
11 Heyes, D. M. Phys. Rev. B 1988, 37, 5677   DOI   ScienceOn
12 Min, S. H.; Son, C. M.; Lee, S. H. Bull. Kor. Chem. Soc. 2007, 28, 1689   DOI   ScienceOn
13 Lee, S. H. Bull. Kor. Chem. Soc. 2007, 28, 1371   DOI   ScienceOn
14 Weeks, J. D.; Chandler, D.; Anderson, H. C. J. Chem. Phys. 1971, 54, 5237   DOI
15 Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids; Oxford Univ. Press: Oxford, 1987; p 64
16 Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids; Oxford Univ. Press: Oxford, 1987; p 81
17 Cummings, P. T.; Varner, T. L. J. Chem. Phys. 1988, 89, 6391   DOI
18 Clarke, A. S.; Kapral, R.; Moore, B.; Patey, G.; Wu, X.-G. Reaction Dynamics in Clusters and in the Condensed Phase; Jortner, J., Levine, R., Pullman, B., Eds.; Kluwer: Dordrecht, 1994; p 89
19 Ryckaert, J.-P.; Bellemans, A.; Cicotti, G.; Paolini, G. V. Phys. Rev. A 1989, 39, 259   DOI
20 Hafskjol, B.; Ikeshoji, T.; Ratkje, S. K. Molec. Phys. 1993, 80, 1389   DOI   ScienceOn
21 Evans, D. J. Phys. Rev. A 1986, 34, 1449   DOI
22 Borgelt, P.; Hoheisel, C.; Stell, G. Phys. Rev. A 1990, 42, 789   DOI   ScienceOn