Browse > Article
http://dx.doi.org/10.5012/bkcs.2007.28.9.1493

Synthesis and Characterization of Alkyl Methacrylate-based Microgels by Experimental Design Method  

Lee, Young-Keun (Industry-Academy Cooperation Foundation, RIC, Natural Cosmetics and Perfumery Institute, Soon Chun Hyang University)
Jin, Fan-Long (Department of Materials Engineering, School of Chemical and Materials Engineering, Jilin Institute of Chemical Technology)
Park, Soo-Jin (Department of Chemistry, Inha University)
Publication Information
Abstract
In this work, alkyl methacrylate-based microgels were synthesized by an experimental design method, and their sebum absorption characteristics were investigated. The results of fractional factorial experimentation indicated that the cross-linking agent content, solvent content, and stirring speed were the main parameters in the synthesis of the microgels. The suitable synthesis conditions were determined by the response surface design method. Through a study of the monomer and solvent effects, it was confirmed that the microgel shows the highest sebum absorption ratio when t-butyl methacrylate is used as a monomer or when acetone is used as a solvent. The optimal microgel synthesis conditions for cosmetic application were determined, and the resulting microgel had a mean particle size of 4.7 μm and a sebum absorption ratio of 435%.
Keywords
Microgels; Synthesis; Alkyl methacrylate; Sebum absorption ratio; Experimental design method;
Citations & Related Records

Times Cited By Web Of Science : 2  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Oh, B.; Jung, W. I.; Kim, D. W.; Rhee, H. W. Bull. Korean Chem. Soc. 2002, 23, 683   DOI   ScienceOn
2 Park, Y. T.; Lee, S. G.; Cheong, J. J. Bull. Korean Chem. Soc. 1997, 18, 1135
3 Sedlmeyer, F.; Daimer, K.; Rademacher, B.; Kulozik, U. Colloids Surf. B 2003, 31, 13   DOI   ScienceOn
4 Dondos, A.; Papanagopoulos, D. J. Polym. Sci. Part B: Polym. Phys. 2003, 41, 707   DOI   ScienceOn
5 Okubo, M.; Yonehara, H.; Yamashita, T. Colloid Polym. Sci. 2000, 278, 1007   DOI   ScienceOn
6 Bodugoz, H.; Guven, O. J. Appl. Polym. Sci. 2002, 83, 349   DOI   ScienceOn
7 Li, W. H.; Stover, H. D. H. J. Polym. Sci. Part A: Polym. Chem. 1999, 37, 2899   DOI   ScienceOn
8 Li, W. H.; Li, K.; Stover, H. D. H. J. Polym. Sci. Part A: Polym. Chem. 1999, 37, 2295   DOI   ScienceOn
9 Caykara, T.; Dogmus, M.; Kantoglu, O. J. Polym. Sci. Part B: Polym. Phys. 2004, 42, 2586   DOI   ScienceOn
10 Gabrielsson, J.; Lindberg, N. O.; Lundstedt, T. J. Chemometrics 2002, 16, 141   DOI   ScienceOn
11 Oh, B.; Sun, Y. K.; Kim, D. W. Bull. Korean Chem. Soc. 2001, 22, 1136
12 Park, S. J.; Kim, K. S. Colloids Surf. B 2005, 43, 138   DOI   ScienceOn
13 Jun, J. B.; Uhm, S. Y.; Suh, K. D. Macromol. Chem. Phys. 2003, 204, 451   DOI   ScienceOn
14 Park, S. J.; Lee, Y. M.; Hong, S. K. Colloid Surface B 2006, 47, 211   DOI   ScienceOn
15 Saikia, P. J.; Lee, J. M.; Lee, B. H.; Choe, S. J. Polym. Sci. Part A: Polym. Chem. 2007, 45, 348   DOI   ScienceOn
16 Bai, F.; Li, R.; Yang, X.; Li, S.; Huang, W. Polym. Int. 2006, 55, 319   DOI   ScienceOn