Browse > Article
http://dx.doi.org/10.5012/bkcs.2007.28.2.251

Crystal Structure of Fully Dehydrated Partially Cs+-Exchanged Zeolite X, Cs52Na40-X (The Highest Cs+-Exchanged Level Achieved by Conventional Method and Confirmation of Special Site Selectivity)  

Bae, Myung-Nam (Department of Chemistry, Pusan National University)
Publication Information
Abstract
The crystal structure of fully dehydrated partially Cs+-exchanged zeolite X, [Cs52Na40Si100Al92O384], a = 24.9765(10) A, has been determined by single-crystal X-ray diffraction techniques in the cubic space group Fd3 at 21 °C. The crystal was prepared by flow method for 5 days using exchange solution in which mole ratio of CsOH and CsNO3 was 1 : 1 with total concentration of 0.05 M. The crystal was then dehydrated at 400 °C and 2 × 10-6 Torr for 2 days. The structure was refined to the final error indices, R1 = 0.051 and wR2 (based on F2) = 0.094 with 247 reflections for which Fo > 4σ (Fo). In this structure, about fifty-two Cs+ ions per unit cell are located at six different crystallographic sites with special selectivity; about one Cs+ ion is located at site I, at the centers of double oxygen-rings (D6Rs), two Cs+ ions are located at site I', and six Cs+ ions are found at site II'. This is contrary to common view that Cs+ ions cannot pass sodalite cavities nor D6Rs because six-ring entrances are too small. Ring-opening by the formation of ?OH groups and ring-flexing make Cs+ ions at sites I, I', and II' enter six-oxygen rings. The defects of zeolite frameworks also give enough mobility to Cs+ ions to enter sodalite cavities and D6Rs. Another six Cs+ ions are found at site II, thirty-six are located at site III, and one is located at site III' in the supercage, respectively. Forty Na+ ions per unit cell are located at two different crystallographic sites; about fourteen are located at site I, the centers of D6Rs and twenty-six are also located at site II in the supercage. Cs+ ions and Na+ ions at site II are recessed ca. 0.34(1) A and 1.91(1) A into the supercage, respectively. In this work, the highest exchange level of Cs+ ions per unit cell was achieved in zeolite X by conventional aqueous solution methods and it was also shown that Cs+ ion could pass through the sixoxygen rings.
Keywords
Zeolite X; Cesium; Sodium; Double six-rings; Six-rings;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 3  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 Zhu, L.; Seff, K. J. Phys. Chem. B 2000, 104, 8946, Errata: 2001, 106, 12221   DOI   ScienceOn
2 Koller, H.; Burger, B.; Schneider, A. M.; Engelhardt, G.; Weitkamp, J. Microporous Mater. 1995, 5, 219   DOI   ScienceOn
3 Vance Jr., T. B.; Seff, K. J. Phys. Chem. 1975, 79, 2163   DOI
4 Olson, D. H. private communication
5 International Tables for X-ray Crystallography; Kynoch Press: Birmingham, England, 1974; Vol II, p 302
6 Sheldrick, G. M. SHELXS-97: A Program for Determination; University of Gottingen: Germany, 1997; Sheldrick, G. M. SHELXL-97: A Program for Structure Refinement; University of Gottingen: Germany, 1997
7 Bae, M. N.; Song, M. K.; Kim, Y. Bull. Korean Chem. Soc. 2001, 22, 1081
8 International Tables for X-ray Crystallography; Kynoch Press: Birmingham, England, 1974; Vol IV, p 73
9 Jeong, M. S.; Kim, Y.; Seff, K. J. Phys. Chem. 1993, 97, 10139   DOI   ScienceOn
10 Barrier, R. M.; Rees, L. V. C.; Shamsuzzoha, M. J. J. Inorg. Nucl. Chem. 1968, 30, 333   DOI   ScienceOn
11 Bogomolov, V. N.; Petranovskii, V. P. Zeolites 1986, 6, 418   DOI   ScienceOn
12 Breck, D. W. Zeolite Molecular Sieves; Wiley-Interscience: New York, 1974; p 145
13 Barrer, R. M. Hydrothermal Chemistry of Zeolites; Academic Press: London, 1982; p 24
14 Sherry, H. S. J. Phys. Chem. 1966, 70, 1158   DOI
15 Jang, S. B.; Song, S. H.; Kim, Y. J. Korean Chem. Soc. 1996, 40, 427
16 Bae, M. N.; Song, M. K.; Kim, Y. Bull. Korean Chem. Soc. 2001, 22, 1091
17 Shepelev, Yu. F.; Butikova, I. K.; Smolin, Yu. I. Zeolites 1991, 11, 287   DOI   ScienceOn
18 Subramanian, V.; Seff, K. J. Phys. Chem. 1980, 84, 2928   DOI
19 Sun, T.; Seff, K.; Heo, N. H.; Petranovskii, V. P. J. Phys. Chem. 1994, 98, 5768   DOI   ScienceOn
20 Jeong, G. H.; Kim, Y. Bull. Korean Chem. Soc. 2002, 23, 1121   DOI   ScienceOn
21 Subramanian, V.; Seff, K. J. Phys. Chem. 1980, 84, 2928   DOI
22 Theng, B. K. G.; Vansant, E.; Uytterhoeven, J. B. Trans. Faraday Soc. 1968, 64, 3370   DOI
23 Kim, Y.; Song, S. H.; Seff, J. Phys. Chem. 1990, 94, 5959   DOI
24 Cromer, D. T. Acta Crystallogr. 1965, 18, 17   DOI
25 International Tables for X-ray Crystallography; Kynoch Press: Birmingham, England, 1974; Vol IV, p 149
26 Ryu, K. S.; Bae, M. N.; Kim, Y.; Seff, K. Microsoft and Mesosoft Materials 2004, 71, 65
27 Jeong, M. S.; Kim, Y.; Seff, K. J. Phys. Chem. 1993, 97, 10139   DOI   ScienceOn
28 Pluth, J. J. Ph. D. Thesis, University of Washington, University Microfilms, No. 71-28459, Ann Arber, MI, 1991
29 Breck, D. W.; Eversole, W. G.; Milton, R. M.; Reed, T. B.; Thomas, T. L. J. Am. Chem. Soc. 1956, 78, 5963   DOI
30 Rodriguez, I.; Cambon, H.; Brunel, D.; Lasperas, M.; Geneste, P. Studies in Surface Science and Catalysis 1993, 78, 623   DOI
31 Barrier, R. M.; Rees, L. V. C.; Ward, D. J. Proc. R. Soc. Ser. A 1963, 273, 180
32 Breck, D. W. Zeolite Molecular Sieves; Wiley-Interscience: New York, 1974; pp 537-541
33 Heo, N. H.; Seff, K. J. Am. Chem. Soc. 1987, 109, 7986   DOI
34 Handbook of Chemistry and Physics, 70th ed.; The Chemical Rubber Co.: Cleveland, Ohio, 1989/1990; pp F-187
35 Flanigen, E. M. Zeoites. Science and Technology; Nijhoff, M., Ed.; The Hague, 1984
36 Davis, R. J.; Doskocil, E. J.; Bordawekar, S. Catalysis Today 2003, 62, 241   DOI   ScienceOn