Browse > Article
http://dx.doi.org/10.5012/bkcs.2007.28.10.1746

The Second-order Scattering of the Interaction of Pd Nanoparticles with Protein and Its Analytical Application  

Guo, Xiaoyan (Key Laboratory of Catalysis and Material Science of the State Ethnic Affairs Commission & Ministry of Education, Hubei Province, South-Central University for Nationalities)
He, Baolin (Key Laboratory of Catalysis and Material Science of the State Ethnic Affairs Commission & Ministry of Education, Hubei Province, South-Central University for Nationalities)
Sun, Chuntao (Key Laboratory of Catalysis and Material Science of the State Ethnic Affairs Commission & Ministry of Education, Hubei Province, South-Central University for Nationalities)
Zhao, Yanxi (Key Laboratory of Catalysis and Material Science of the State Ethnic Affairs Commission & Ministry of Education, Hubei Province, South-Central University for Nationalities)
Huang, Tao (Key Laboratory of Catalysis and Material Science of the State Ethnic Affairs Commission & Ministry of Education, Hubei Province, South-Central University for Nationalities)
Liew, Kongyong (Key Laboratory of Catalysis and Material Science of the State Ethnic Affairs Commission & Ministry of Education, Hubei Province, South-Central University for Nationalities)
Liu, Hanfan (Key Laboratory of Catalysis and Material Science of the State Ethnic Affairs Commission & Ministry of Education, Hubei Province, South-Central University for Nationalities)
Publication Information
Abstract
The second-order scattering (SOS) phenomenon of the interaction of Pd nanoparticles with protein was reported and a simple, sensitive, palladium nanoparticle-based assay for trace amount of protein with SOS technique was developed. The SOS intensities were significantly enhanced due to the interaction of Pd nanoparticles with bovine serum albumin (BSA) or human serum albumin (HSA) at pH 3.5 or 4.0, respectively. The maximum SOS peak appeared at 260/520 nm (λex/λem). The optimal experiment conditions, affecting factors and the influence of some coexisting substances were checked. The SOS intensity increased proportionally with the increase of Pd concentration below 3.0 × 10?5 mol·L?1, while declined gradually above 4.0 × 10?5 mol·L?1. BSA within the range of 0.01-2.6 μg·mL?1 and HSA of 0.01-1.7 μg·mL?1 can be detected with this method and the detection limits were 2.3 and 11.2 ng·mL?1, respectively. The method was successfully applied to the quantitative detection of total protein content in human serum samples with the maximum relative standard deviation (RSD) lower than 2.6% and the recoveries over the range of 99.5-100.5%.
Keywords
Palladium nanoparticles; Second-order scattering; Protein detection; Bovine serum albumin;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Li, N. B.; Liu, S. P.; Luo, H. Q. Anal. Chim. Acta 2002, 472, 89   DOI   ScienceOn
2 Ding, F.; Zhao, H.; Chen, S.; Ouyang, J.; Jin, L. Anal. Chim. Acta 2005, 536, 171   DOI   ScienceOn
3 Ding, F.; Zhao, H.; Xia, L.; Jin, L. Spectrochim. Acta Part A 2005, 62, 377   DOI   ScienceOn
4 Lowry, O. H.; Rosebrough, N. J.; Farr, A. L.; Randall, R. J. J. Biol. Chem. 1951, 193, 265
5 Daniel, M. C.; Astruc, D. Chem. Rev. 2004, 104, 293   DOI   ScienceOn
6 Penn, S. G.; He, L.; Natan, M. Curr. Opin. Chem. Biol. 2003, 7, 609   DOI   ScienceOn
7 Chang, W. B.; Li, K. A. Concise Handbook of Analytical Chemistry; Beijing University Press: Beijing, PR China, 1981; p 264
8 Rodkey, R. L. Arch. Biochem. Biophys. 1964, 108, 510   DOI   ScienceOn
9 Bradford, M. M. Anal. Biochem. 1976, 72, 248   DOI   ScienceOn
10 Flores, R. Anal. Biochem. 1978, 88, 605   DOI   ScienceOn
11 Chen, G. Z.; Huang, X. Z.; Zheng, Z. Z.; Xu, J. G.; Wang, Z. B. Fluorescence Analysis Method; Science Press: Beijing, PR China, 1990; p 102
12 Liu, S. P.; Liu, Z. F.; Li, M. Acta Chim. Sin. 1995, 53, 1178
13 Liu, S. P.; Liu, Z. F. Chem. J. Chin. Univ. 1996, 17, 1213
14 Wu, L. P.; Li, Y. F.; Huang, C. Z.; Zhang, Q. Anal. Chem. 2006, 78, 5570   DOI   ScienceOn
15 Liu, S. P.; Yang, R.; Liu, Z. F. J. Anal. Chem. 1998, 26, 1432
16 Liu, S. P.; Liu, Z. F.; Jiang, Z. L.; Li, M.; Long, X. F. Acta Chim. Sin. 2001, 59, 1864
17 Liu, S. P.; Liu, Z. F.; Li, M. Chin. J. Anal. Chem. 1996, 24, 665
18 Zhou, Y. Y.; Bian, G. R.; Wang, L. Y.; Dong, L.; Wang, L.; Kan, J. Spectrochim. Acta Part A 2005, 61, 1841   DOI   ScienceOn
19 Sharron, G. P.; Liiu, H.; Michael, J. N. Curr. Opinion Chem. Biol. 2003, 7, 609   DOI   ScienceOn
20 Capitan-Vallvey, L. F.; Duque, O.; Miron, G. G.; Checa, M. R. Anal. Chim. Acta 2001, 433, 155
21 Li, B. X.; Zhang, Z. J.; Zhao, L. X. Anal. Chim. Acta 2002, 468, 65   DOI   ScienceOn
22 Zhu, N. N.; Zhang, A. P.; He, P. G.; Fang, Y. Z. Electroanalysis 2004, 16, 1925   DOI   ScienceOn
23 Pasternack, R. F.; Bustamante, C.; Collings, P. J.; Giannetteo, A.; Gibbs, E. J. J. Am. Chem. Soc. 1993, 115, 5393   DOI   ScienceOn
24 Pasternack, R. F.; Collings, P. J. Science 1995, 269, 935   DOI   ScienceOn
25 Huang, C. Z.; Zhu, J. X.; Li, K. A.; Tong, S. Y. Anal. Sci. 1996, 13, 263
26 Huang, C. Z.; Li, K. A.; Tong, S. Y. Anal. Chem. 1996, 68, 2259   DOI   ScienceOn