Browse > Article
http://dx.doi.org/10.5012/bkcs.2006.27.3.399

Porous Organic-inorganic Hybrids for Removal of Amines  

Cho, Sung-Youl (Department of Chemistry, Yonsei University)
Kim, Na-Ri (Department of Chemistry, Yonsei University)
Cao, Guozhong (Department of Materials Science and Engineering, University of Washington)
Kim, Joong-Gon (Biotechnology Division, Hanwha Chemical R&D Center)
Chung, Chan-Moon (Department of Chemistry, Yonsei University)
Publication Information
Abstract
Porous organic-inorganic hybrids have been prepared from tetraethylorthosilicate (TEOS) and organosilane precursors by sol-gel method. Two organosilanes, 3-(2,4-dinitrophenylamino)propyltriethoxysilane (DNPTES) and N-[[(2-nitrophenyl)methoxy]carbonyl]-3-triethoxysilylpropylamine (NPTES) were used to incorporate electron-accepting (di)nitrophenyl groups into the hybrids. The hybrids were characterized by FT-IR spectroscopy and elemental analysis, and their pore characteristics were studied by nitrogen sorption porosimetry. Surface area of the hybrids ranged from 563 to 770 $m^2$/g, pore volume, 0.23-0.30 $cm^3$/g, and porosity, 35-41%. It was demonstrated by UV-vis spectroscopy that aniline, ethylenediamine, and 1-aminonaphthalene could be removed from their hexane solutions in the presence of the hybrid powders. The removal of amines is attributable to donor-acceptor interaction between the electron-donating amines and electron-accepting (di)nitrophenyl moiety.
Keywords
Porous hybrid; Sol-gel; Amine removal; Donor-acceptor interaction;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Hunter, P.; Oyama, S. T. Control of Volatile Organic Compound Emissions; John Wiley & Sons: New York, 2000
2 Conley, W.; Babcock, C.; Lilygren, J.; Sandstrom, C.; Farrar, N.; Piatt, J.; Kincad, D.; Goodwin, B.; Kishkovich, O.; Higley, J.; Cate, P. Proc. SPIE 1998, 3333, 924   DOI
3 Jung, J. C.; Kim, H. S.; Baik, K. H. J. Photopolym. Sci. Technol. 1999, 12, 469   DOI
4 Ku, C. Y.; Shieh, J. M.; Chiou, T. B.; Lin, H. K.; Lei, T. F. J. Electrochem. Soc. 2000, 147, 3833   DOI   ScienceOn
5 Macaud, M.; Schulz, E.; Vrinat, M.; Lemaire, M. Chem. Commun. 2002, 23
6 Schubert, U.; Husing, N.; Lorenz, A. Chem. Mater. 1995, 7, 2010   DOI   ScienceOn
7 Foster, R. Organic Charge-Transfer Complexes; Academic Press: New York, 1969
8 Malone, H. E. Talanta 1975, 22, 97   DOI   ScienceOn
9 Lu, Y.; Cao, G.; Kale, R. P.; Prabakar, S.; Lopez, G. P.; Brinker, C. J. Chem. Mater. 1999, 11, 1223   DOI   ScienceOn
10 Wright, J. D.; Sommerdijk, N. A. J. M. Sol-Gel Materials. Chemistry and Applications; Gordon and Breach Science Publishers: Amsterdam, 2001
11 Lochmuller, C. H. Midland Macromol. Monograph 1980, 7, 231
12 Kleitz, F.; Kim, T. W.; Ryoo, R. Bull. Korean Chem. Soc. 2005, 26, 1653   DOI   ScienceOn
13 Marx, R. B.; Aitken, M. D. Environ. Sci. Technol. 2000, 34, 3379   DOI   ScienceOn
14 Huang, W. S.; Kwong, R.; Moreau, W. Proc SPIE 1998, 3546, 400   DOI
15 Cao, G.; Tian, H. J. Sol-Gel Sci. Technol. 1998, 13, 305   DOI   ScienceOn
16 Brinker, C. J.; Sherer, G. W. Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing; Academic Press: New York, 1990
17 Merdrignac, I.; Behar, F.; Albrecht, P.; Briot, P.; Vandenbroucke, M. Energy Fuels 1998, 12, 1342   DOI   ScienceOn
18 Casero, I.; Sicilia, D.; Rubio, S.; Perez-Bendito, D. Wat. Res. 1985, 31, 8
19 Kim, T. J.; Lee, E. Y.; Kim, Y. J.; Cho, K. S. World J. Microbiol. Biotechnol. 2003, 19, 411   DOI   ScienceOn
20 Qi, J.; Yan, Y.; Su, Y.; Qu, F.; Dai, Y. Energy Fuels 1998, 12, 788   DOI   ScienceOn
21 Jewell, D. M.; Weber, J. H.; Bunger, J. W.; Plancher, H.; Lantham, D. R. Anal. Chem. 1972, 44, 1391   DOI
22 Yang, R. T. Nanostructured Materials; Academic Press: San Diego, 2001