Browse > Article
http://dx.doi.org/10.5012/bkcs.2005.26.3.399

Optimization of Neural Networks Architecture for Impact Sensitivity of Energetic Molecules  

Cho, Soo-Gyeong (Agency for Defense Development)
No, Kyoung-Tai (Research Institute of Bioinformatics & Molecular Design)
Goh, Eun-Mee (Agency for Defense Development)
Kim, Jeong-Kook (Agency for Defense Development)
Shin, Jae-Hong (Research Institute of Bioinformatics & Molecular Design)
Joo, Young-Dae (Research Institute of Bioinformatics & Molecular Design)
Seong, See-Yearl (Research Institute of Bioinformatics & Molecular Design)
Publication Information
Abstract
We have utilized neural network (NN) studies to predict impact sensitivities of various types of explosive molecules. Two hundreds and thirty four explosive molecules have been taken from a single database, and thirty nine molecular descriptors were computed for each explosive molecule. Optimization of NN architecture has been carried out by examining seven different sets of molecular descriptors and varying the number of hidden neurons. For the optimized NN architecture, we have utilized 17 molecular descriptors which were composed of compositional and topological descriptors in an input layer, and 2 hidden neurons in a hidden layer.
Keywords
Energetic molecule; Explosives; Impact sensitivity; Neural networks; Molecular descriptor;
Citations & Related Records

Times Cited By Web Of Science : 27  (Related Records In Web of Science)
Times Cited By SCOPUS : 26
연도 인용수 순위
1 Perssen, P.-A.; Holmberg, R.; Lee, J. Rock Blasting and Explosives Engineering; CRC Press: Baca Raton, FL, 1993
2 Koehler, J.; Meyer, R. Explosives, 4th ed.; VCH: Weinheim, Germany, 1993
3 Brill, T. B.; James, K. J. Chem. Rev. 1993, 2667
4 Zeman, S.; Krupka, M. Propel. Explos. Pyrotech. 2003, 28, 301   DOI   ScienceOn
5 Zeman, S. Propel. Explos. Pyrotech. 2003, 28, 308   DOI   ScienceOn
6 Zeman, S.; Krupka, M. Propel. Explos. Pyrotech. 2003, 28, 249   DOI   ScienceOn
7 Zeman, S. Propel. Explos. Pyrotech. 2000, 25, 66   DOI   ScienceOn
8 Storm, C. B.; Stine, J. R.; Kramer, J. F. Sensitivity Relationship in Energetic Materials; Los Alamos National Laboratory, LAUR-89-2936, 1989
9 Storm, C. B.; Stine, J. R.; Kramer, J. F. In Chemistry and Physics of Energetic Materials; Bulusu, S. N., Ed.; Kluwer Academic Press: Dordrecht, Netherlands, 1990; p 605
10 Nefati, H.; Cense, J.-M.; Legendre, J.-J. J. Chem. Inf. Comput. Sci. 1996, 36, 804   DOI   ScienceOn
11 Cerius Modeling Environment, Relaese 4.0; Accelrys Inc.: San Diego, 1999
12 Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F.; Stewart, J. J. P. J. Am. Chem. Soc. 1985, 107, 3902   DOI
13 Ghose, A. K.; Viswanadhan, V. N.; Wendoloski, J. J. J. Phys. Chem. A 1998, 102, 3762   DOI   ScienceOn
14 Zupan, J.; Gasteiger, J. Neural Networks in Chemistry and Drug Design, 2nd ed.; Wiley-VCH: Weinheim, Germany, 1999
15 Neural Networks in QSAR and Drug Design; Devillers, J., Ed.; Academic Press: London, 1996
16 Wold, S.; Johansson, E.; Cocchi, M. In 3D-QSAR in Drug Design. Theory Methods and Applications; Kubynyi, H., Ed.; ESCOM: Leiden, Netherlands, 1993; pp 523-550
17 Myers, R. H. Classical and Modern Regression with Applications, 2nd ed.; Duxbury Press: Belmont, CA, 1990
18 Lee, K. W.; Kwon, S. Y.; Hwang, S.; Lee, J.-U.; Kim, H. Bull. Korean Chem. Soc. 1996, 17, 147
19 Cho, D. H.; Lee S. K.; Kim, B. T.; No, K. T. Bull. Korean Chem. Soc. 2001, 22, 388
20 Karelson, M.; Lobonov, V. S. Chem. Rev. 1996, 96, 1027   DOI   ScienceOn
21 Politzer, P.; Murray, J. S.; Lane, P.; Sjoberg, P.; Adolph, H. G. Chem. Phys. Lett. 1991, 181, 78   DOI   ScienceOn
22 Politzer, P.; Murray, J. S. Mol. Phys. 1995, 86, 251   DOI   ScienceOn
23 Rice, B.; Hare, J. J. J. Phys. Chem. A 2002, 106, 1770   DOI   ScienceOn
24 Coffey, C. S.; DeVost, V. F. Propel. Explos. Pyrotech. 1995, 20, 105   DOI   ScienceOn