Browse > Article
http://dx.doi.org/10.5012/bkcs.2005.26.12.2033

Isolation of New Self-Cleaving Ribozymes with in vitro Selection  

Cho, Bong-Rae (Department of Applied Chemistry, Division of Applied Science, Cheongju University)
Lee, Young-Hoon (Dept. of Chemistry and Center for Molecular Design and Synthesis, KAIST)
Publication Information
Abstract
In vitro selection was used to isolate $Mg^{2+}$-dependent self-cleaving ribozymes with cis-cleavage activity from a pre-tRNA library having 40-mer random sequences attached to 5'-end of E. coli $tRNA^{Phe}$. After 8 rounds of SELEX (Systematic Evolution of Ligands by Exponential Enrichment), RNA molecules which can self-cleave at the high concentration of $Mg^{2+}$ were isolated. The selected ribozymes can carry out the self-cleavage reaction in the presence of 100 mM $Mg^{2+}$ but not in 10 mM $Mg^{2+}$. The cleavage sites of the ribozymes are located at +3 and +4 of $tRNA^{Phe}$, compared with +1 position of 5'-end cleavage site of pre-tRNA by RNase P. New RNA constructs deprived of its D stem-loop, anticodon stem-loop, variable loop and T stem-loop, respectively showed the cleavage specificity identical to a ribozyme having the intact tRNA structure. Also, the new ribozyme fused with both a ribozyme and $tRNA^{Leu}$ showed the cleavage activities at the various sites within its sequences, different from two sites of position +3 and +4 observed in the ribozyme with $tRNA^{Phe}$. Our results suggest that the selected ribozyme is not structural-specific for tRNA.
Keywords
SELEX; Self-cleavage ribozyme; tRNA; H1 RNA;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 Gesteland, R. F.; Cech, T. R.; Atkins, J. F. In The RNA World, 2nd ed; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, New York, 1999; pp 265-286
2 Winkler, W. C.; Nahvi, A.; Roth, A.; Collins, J. A.; Breaker, R. R. Nature 2004, 428, 281-286   DOI   ScienceOn
3 Tang, J.; Breaker, R. R. Proc. Natl. Acad. Sci. USA 2000, 97, 5784-5789   DOI   ScienceOn
4 Meli, M.; Vergne, J.; Maurel, M.-C. J. Biol. Chem. 2003, 278, 9835-9842   DOI   ScienceOn
5 Zamel, R.; Poon, A.; Jaikaran, D.; Andersen, A.; Olive, J.; Abreu, D. D.; Collins, R. A. Proc. Natl. Acad. Sci. USA 2004, 101, 1467- 1472   DOI   ScienceOn
6 Frank, D. N.; Pace, N. R. Annual Review Biochem. 1998, 67, 153- 180   DOI   ScienceOn
7 Gopalan, V.; Vioque, A.; Altman, S. J. Biol. Chem. 2002, 277, 6759-6762   DOI   ScienceOn
8 Akaboshi, E.; Guerrier-Takada, C.; Altman, S. Biochem. Biophys. Res. Comm. 1980, 96, 831-837   DOI   ScienceOn
9 Guerrier-Takada, C.; Haydock, K.; Allen, L.; Altman, S. Biochemistry 1986, 25, 1509-1515   DOI   ScienceOn
10 Morales, M. J.; Dang, Y. L.; Lou, Y. C.; Sulo, P.; Martin, N. C. Proc. Natl. Acad. Sci. USA 1992, 89, 9875-9879   DOI   ScienceOn
11 Altman, S.; Kirsebom, L.; Talbot, S. FASEB J. 1993, 7, 7-14
12 Jarrous, N.; Eder, P. A.; Guerrier-Takada, C.; Hoog, C.; Altman, S. RNA 1998, 4, 407-417
13 Holbrook, S. R.; Sussman, J. L.; Warrant, W. R.; Church, G. M.; Kim, S.-H. Nucleic Acids Res. 1977, 4, 2811   DOI   ScienceOn
14 Quigley, G. J.; Teeter, M. M.; Rich, A. Proc. Natl. Acad. Sci. USA 1978, 75, 64   DOI   ScienceOn