Browse > Article
http://dx.doi.org/10.5012/bkcs.2003.24.9.1256

The Homodimerization of Thalictrum tuberosum O-Methyltransferases by Homology-based Modelling  

Yang, Hee-Jung (Bio/Molecular Informatics Center, Konkuk University)
Ahn, Joong-Hoon (Bio/Molecular Informatics Center, Konkuk University)
Jeong, Karp-Joo (Bio/Molecular Informatics Center, Konkuk University)
Lee, Sang-San (Supercomputing Center, Korea Institute of Science and Technology Information)
Lim, Yoong-Ho (Bio/Molecular Informatics Center, Konkuk University)
Publication Information
Abstract
Two O-methyltransferases, OMTII-1 and OMTII-4 of meadow rue Thalictrum tuberosum showed a high sequence identity. Of 364 amino acids only one residue is not the same, which is Tyr21 or Cys21. Even if the 21st residues in these OMTs are not included in the binding sites of the enzymes, binding affinities of the enzyme homodimers over the same substrate are very different. While the binding affinity of one homodimer over caffeic acid is 100%, that of the other is 25%. Authors tried to predict the three-dimensional structures of Thalictrum tuberosum O-methyltransferases using homology-based modelling by a comparison with caffeic acid O-methyltransferase, and explain the reason of the phenomenon mentioned above based on their three dimensional structural studies. In the enzyme homodimer, the better binding affinity may be caused by the shorter distance between the 21st residue and the binding site of the other monomer.
Keywords
Modelling; Molecular dynamics; Homology; Methyltransferase; Thalictrum tuberosum;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 4  (Related Records In Web of Science)
Times Cited By SCOPUS : 4
연도 인용수 순위
1 Dixon, R. A. Nature 2001, 411, 843.   DOI   ScienceOn
2 Ibrahim, R. K.; Bruneau, A.; Bantignies, B. Plant Mol. Biol. 1998,36, 1.   DOI   ScienceOn
3 Moon, J. K.; Kim, J.; Rhee, S.; Kim, G.; Yun, H.; Chung, B.; Lee,S.; Lim, Y. Bull. Korean Chem. Soc. 2002, 23, 1545.   DOI   ScienceOn
4 Maury, S.; Geoffroy, P.; Legrand, M. Plant Physiol. 1999, 121,215.   DOI
5 Wang, J.; Pichersky, E. Arch. Biochem. Biophy. 1999, 368, 172.   DOI   ScienceOn
6 Frick, S.; Kutchan, T. M. Plant J. 1999, 17, 329.   DOI   ScienceOn
7 Zhong, R.; Morrison, W. H. III; Himmelsbach, D. S.; Poole, F. L.;Ye, Z. H. Plant Physiol. 2000, 124, 563.   DOI
8 Choe, J.; Chang, S. Bull. Korean Chem. Soc. 2002, 23, 48.   DOI   ScienceOn
9 Eckardt, N. A. Plant Cell. 2002, 14, 1185.   DOI
10 Yoon, E. Y. Bull. Korean Chem. Soc. 2001, 22, 293.
11 Muzac, I.; Wang, J.; Anzellotti, D.; Zhang, H.; Ibrahim, R. K.Arch. Biochem. Biophy. 2000, 375, 385.   DOI   ScienceOn
12 Wilmouth, R.; Turnbull, J.; Welford, R.; Clifton, I.; Prescott, A.;Schofield, C. The Protein Data Bank. Structure (London) 2002,10, 93.
13 Zubieta, C.; Kota, P.; Ferrer, J.; Dixon, R. A.; Noel, J. P. Plant Cell2002, 14, 1265.   DOI
14 Schaller, H.; Bouvier-Nave, P.; Benveniste, P. Plant Physiol. 1998,118, 461.   DOI
15 Van Aalten, D. M. F.; Crielaard, W.; Hellingwerf, K. J.; Joshua-Tor, L. Acta Crystallogr. Sect. D 2002, 58, 585.   DOI
16 Gauthier, A.; Gulick, P. J.; Ibrahim, R. K. Arch. Biochem. Biophy.1998, 351, 243.   DOI   ScienceOn