Browse > Article
http://dx.doi.org/10.5012/bkcs.2003.24.6.733

Recent Development of Linear Scaling Quantum Theories in GAMESS  

Choi, Cheol-Ho (Department of Chemistry, Kyungpook National University)
Publication Information
Abstract
Linear scaling quantum theories are reviewed especially focusing on the method adopted in GAMESS. The three key translation equations of the fast multipole method (FMM) are deduced from the general polypolar expansions given earlier by Steinborn and Ruedenberg. Simplifications are introduced for the rotation-based FMM that lead to a very compact FMM formalism. The OPS (optimum parameter searching) procedure, a stable and efficient way of obtaining the optimum set of FMM parameters, is established with complete control over the tolerable error ε. In addition, a new parallel FMM algorithm, requiring virtually no inter-node communication, is suggested which is suitable for the parallel construction of Fock matrices in electronic structure calculations.
Keywords
Linear scaling quantum theory; Fast multipole method; Parallel algorithm; Sperical harmonics; Ab initio;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 2  (Related Records In Web of Science)
Times Cited By SCOPUS : 2
연도 인용수 순위
1 Strain, M. C.; Scuseria. G. E.; Frisch, M. J. Science (Washington, D.C) 1996, 271(5245), 51.   DOI   ScienceOn
2 Choi, C. H.; Ivanic, J.; Gordon, M. S.; Ruedenberg, K. J. Chem. Phys. 1999, 111, 8825.   DOI   ScienceOn
3 Greengard, L.; Gropp, W. D. Computers Math. Applie. 1990, 20, 63.
4 Challacombe, M. J. Chem. Phys. 2000, 113(22), 10037.   DOI   ScienceOn
5 Burant, J. C.; Strain, M. C.; Scuseria, G. E.; Frisch, M. J. Chem. Phys. Lett. 1996, 258(1,2), 45.   DOI   ScienceOn
6 Choi, C. H.; Ruedenberg, K.; Gordon, M. S. J. Comput. Chem. 2001, 22, 1484.   DOI   ScienceOn
7 White, C.; Head-Gordon, M. Chem. Phys. Lett. 1996, 257, 647.   DOI   ScienceOn
8 White, C.; Head-Gordon, M. J. Chem. Phys. 1996, 105, 5061.   DOI   ScienceOn
9 Greengard, L. The Rapid Evaluation of Potential Fields in Particle Systems; MIT: Cambridge, 1987.
10 Ochsenfeld, C.; White, C. A.; Head-Gordon, M. J. Chem. Phys. 1998, 109(5), 1663.   DOI   ScienceOn
11 White, C. A.; Johnson, B. G.; Gill, P. M. W.; Head-Gordon, M. Chem. Phys. Lett. 1996, 253(3,4), 268.   DOI   ScienceOn
12 White, C.; Head-Gordon, M. J. Chem. Phys. 1994, 101, 6593.   DOI   ScienceOn
13 Challacombe, M.; Schwegler, E.; Almlof, J. J. Chem. Phys. 1996, 104(12), 4685.   DOI
14 Schwegler, E.; Challacombe, M. J. Chem.Phys. 1996, 105(7), 2726.   DOI   ScienceOn
15 White, C. A.; Johnson, B. G.; Gill, P. M. W.; Head-Gordon, M. Chem. Phys. Lett., 1994, 230(1-2), 8.   DOI   ScienceOn
16 Goedecker, S. Rev. Mod. Phys. 1999, 71, 4.
17 Ra, C. S.; Park, G. Bull. Korean Chem. Soc. 2002, 23, 1199.   DOI   ScienceOn
18 Panas, I.; Almlöf, J.; Feyereisen, M. W. Int. J. Quantum Chem.1991, 40, 797.   DOI
19 Schmidt, K. E.; Lee, M. A. J. Stat. Phys. 1991, 63, 1223.   DOI
20 Haser, M.; Ahlrichs, R. J. Comput. Chem. 1989, 10, 104.   DOI
21 Steinborn, E. O.; Ruedenberg, K. Adv. Quantum Chem. 1973, 7, 1.   DOI
22 Burant, J. C.; Strain, M. C.; Scuseria, G. E.; Frisch, M. J. Chem. Phys. Lett. 1996, 248(1,2), 43.   DOI   ScienceOn