Browse > Article
http://dx.doi.org/10.5012/bkcs.2002.23.5.699

Electrochemical Characterization of Nanosized Electrode Arrays Prepared from Nanoporous Self-Assembled Monolayers  

Choi, Shin-Jung (Department of Chemistry and Center for Integrated Molecular Systems,Pohang University of Science and Technology)
Park, Su-Moon (Department of Chemistry and Center for Integrated Molecular Systems,Pohang University of Science and Technology)
Publication Information
Abstract
We characterized nanoelectrode arrays prepared from self-assembled monolayers (SAMs) by adsorption from a solution containing thiolated $\beta$-cyclodextrin ($\beta$-CD) and n-alkanethiol on the gold electrode surface, using electrochemical methods. While the framework, the n-hexadecanethiol SAM, effectively blocked electron transfer between the electrode surface and solution-phase redox probe molecules, the $\beta$-CD cavities isolated in the forests of n-hexadecanethiol molecules were shown to act as an ultramicroelectrode array. The shapes of cyclic voltammograms of probe molecules were related to the number densities of $\beta$-CD molecules within the monolayer films. Probe molecules that have the correct combination of physical and chemical characteristics were shown to effectively penetrate the framework through the $\beta$-CD pores and exchange electrons with the electrode surface.
Keywords
Nanoporous; Nanoelectrode arrays; Thiolated b-cyclodextrin; Self-assembled monolayers; Molecular selectivity;
Citations & Related Records

Times Cited By Web Of Science : 11  (Related Records In Web of Science)
Times Cited By SCOPUS : 11
연도 인용수 순위
1 Inoue, Y.; Hakushi, T.; Liu, Y.; Tong, L.-H.; Shen, B.-J.; Jin, D.-S. J. Am. Chem. Soc. 1993, 115, 475   DOI
2 Isnin, R.; Salam, C.; Kaifer, A. E. J. Org. Chem. 1991, 56, 35   DOI
3 Godinez, L. A.; Lin, J.; Munoz, M.; Coleman, A. W.; Kaifer, A. E. J. Chem. Soc., Faraday Trans. 1996, 92, 645   DOI
4 Wenz, G. Angew. Chem. Int. Ed. Engl. 1994, 33, 803   DOI   ScienceOn
5 Rojas, M. T.; Koniger, R.; Stoddart, J. F.; Kaifer, A. E. J. Am. Chem. Soc. 1995, 117, 336   DOI   ScienceOn
6 Bard, A. J.; Faulkner, L. R. Electrochemical Methods, 2nd Ed.; Wiley: New York, 2001, p 232.
7 Choi, S.-J.; Woo, D.-H.; Myung, N.; Kang, H.; Park, S.-M. J.Electrochem. Soc. 2001, 148, C569   DOI   ScienceOn
8 Woo, D.-H.; Choi, S.-J.;Han, D.-H.; Kang, H.; Park, S.-M. Phys. Chem. Chem. Phys.2001, 3, 3382   DOI   ScienceOn
9 Choi, S.-J.; Park, S.-M. Adv. Mater. 2000, 12,1547   DOI   ScienceOn
10 Park, S.-M.; Lee, J.-Y.; Choi, S.-J. Synth. Met. 2001,121, 1297.   DOI   ScienceOn
11 Gadelle, A.; Defaye, J. Angew.Chem. Int. Ed. Engl. 1991, 30, 78.   DOI
12 Chailapakul, O.; Crooks, R. M. Langmuir 1993, 9, 884   DOI   ScienceOn
13 Hahner, G.; Woll, Ch.; Buck, M.; Grunze, M. Langmuir 1993, 9, 1955   DOI   ScienceOn
14 Chidsey, C. D. E.; Bertozzi, C. R.; Putvinski, T. M.; Mujsce, A. M. J. Am. Chem. Soc. 1990, 112, 4301   DOI
15 Wightman, R. M.; Wipf, D. O. 'Voltammery at Ultramicroelectrodes' in Electroanalytical Chemistry, Vol. 15; Bard, A. J., Ed.; Dekker: New York, 1989; pp 267-353
16 Chailapakul, O.; Crooks, R. M. Langmuir 1995, 11, 1329   DOI   ScienceOn
17 Lee, J.-Y.; Park, S.-M. J. Phys. Chem. B 1998, 102, 9940   DOI   ScienceOn
18 Li, S.; Purdy, W. C. Chem. Rev. 1992, 92, 1457   DOI
19 Lee, J.-Y.; Park, S.-M. J. Electrochem. Soc. 2000, 147, 4189   DOI   ScienceOn
20 Amatore, C.; Saveant, J. M.; Tessier, D. J. Electroanal. Chem. 1983, 147, 39   DOI   ScienceOn
21 Nuzzo, R. G.; Dubois, L. H.; Allara, D. L. J. Am. Chem. Soc.1990, 112, 558   DOI
22 Bard, A. J.; Faulkner, L. R. Electrochemical Methods, 2nd Ed.; Wiley: New York, 2001, (a) p 168
23 Dubois, L. H. Annu. Rev. Phys. Chem. 1992,43, 437.   DOI   ScienceOn
24 Collard, D. M.; Fox, M. A. Langmuir 1991, 7, 1192   DOI
25 Hamasaki, K.; Ikeda, H.; Nakamura, A.; Ueno, A.; Toda, F.; Suzuki, I.; Osa, T. J. Am. Chem. Soc. 1993, 115, 5035   DOI   ScienceOn
26 Breslow, R.; Zhang, B. J. Am. Chem. Soc. 1996, 118, 8495   DOI   ScienceOn