Browse > Article
http://dx.doi.org/10.5012/bkcs.2002.23.10.1463

Ferroelectric Properties of Substituted Aurivillius Phases SrBi2Nb2-xMxO9 (M=Cr, Mo)  

Moon, S.-Y.
Choi, K. S.
Jung, K. W.
Lee, H.
Jung, D.
Publication Information
Abstract
Partially doped Aurivillius phases SrBi2N$b_{2-x}M_xO_9$ (M=Cr and Mo) were successfully synthesized and characterized. The extent of the substitution was limited at ~20 mole % because of the size differences between $Nb^{5+}$ and $Cr^{6+}$, and between $Nb^{5+}$ and $Mo^{6+}$. When the amount of substitution exceeded ~20 mole%, the phases began to collapse and the second phases were made. The dielectric constants of substituted compounds were enlarged nevertheless Cr or Mo is substituted. The increment is bigger in the Mo substituted compound than in the Cr doped one although the Nb(Cr)$O_6$ octahedra could be more strongly distorted than the Nb(Mo)$O_6$ octahedra since the ionic size difference between $Nb^{5+}$ and of $Cr^{6+}$ is much bigger than that between $Nb^{5+}$ and $Mo^{6+}$. Consequently, the dielectric constant of the substituted Aurivillius phase $Bi_2$A_{n-1}B_{n-x}M_xO_{3n+1}$$ depends on the extent of distortion of the B$O_6$ octahedra and more strongly on the polarizability of the metal.
Keywords
Aurivilius phase; Ferroelectric property; Dielectric constant;
Citations & Related Records

Times Cited By Web Of Science : 7  (Related Records In Web of Science)
Times Cited By SCOPUS : 7
연도 인용수 순위
1 Dimos, D.; Al-Shareef, H. N.; Warren, W. L.; Tuttle, B. A. J. Appl. Phys. Lett. 1996, 80, 1682.
2 Newnham, R. E.; Wolfe, R. W.; Horsey, R. S.; Diaz-Colon, F. A.;Kay, M. I. Mater Res. Bull. 1973, 8, 1183.   DOI   ScienceOn
3 Ismunandar; Kennedy, B. J.; Gunawan; Marsongkohadi J. Solid State Chem. 1996, 126, 135.   DOI   ScienceOn
4 Paz de Arauzo, C. A.; Cuchiaro, J. D.; McMillan, L. D.; Scott, J. F. Nature 1995, 374, 627.   DOI   ScienceOn
5 Withers, R. L.; Thompson, J. G.; Rae, A. D. J. Solid State Chem. 1991, 94, 404.   DOI   ScienceOn
6 Subbarao, E. C. J. Phys. Chem. Solid 1962, 23, 665.   DOI   ScienceOn
7 Rae, A. D.; Thompson, J. G.; Withers, R. L.; Willis, A. C. Acta Crystallogr., Sect. B 1991, 47, 174.   DOI
8 Thompson, J. G.; Rae, A. D.; Withers, R. L.; Craig, D. C. Acta Crystallogr. Sect. B 1990, 46, 474.   DOI
9 Smolenskii, G. A.; Isupov, V. A.; Agranovskaya, A. I. Sov. Phys. Solid State 1961, 3, 651.
10 Aurivillius, B. Ark. Kemi. 1952, 5, 39.
11 Aurivillius, B. Ark. Kemi. 1949, 1, 463, 499.
12 Cross, L. E.; Pohanka, R. C. Mater. Res. Bull. 1971, 6, 939.   DOI   ScienceOn
13 Aurivillius, B. Ark. Kemi. 1950, 2, 519.
14 Al-Shareef, H. N.; Dimos, D.; Boyle, T. J.; Warren, W. L.; Tuttle, B. A. J. Appl. Phys. Lett. 1996, 68, 690.   DOI
15 Rae, A. D.; Thompson, J. G.; Withers, R. L. Acta Crystallogr., Sect. B 1992, 48, 418.   DOI
16 Newnham, R. E.; Wolfe, R. W.; Dorian, J. F. Mater. Res. Bull. 1971, 6, 1029.   DOI   ScienceOn
17 Blake, S. M.; Falconer, M.-J.; McCreedy, M.; Lightfoot, P. J. Mater Chem. 1997, 7, 1609.   DOI   ScienceOn
18 Smolenskii, G. A.; Isupov, V. A.; Agranovskaya, A. I. Sov. Phys. Solid State 1959, 1, 149.