Browse > Article

A Comparison of PCA, LDA, and Matching Methods for Face Recognition  

박세제 (경희대학교 전자공학과)
박영태 (경희대학교 전자공학과)
Abstract
Limitations on the linear discriminant analysis (LDA) for face rerognition, such as the loss of generalization and the computational infeasibility, are addressed and illustrated for a small number of samples. The principal component analysis (PCA) followed by the LDA mapping may be an alternative that ran overcome these limitations. We also show that any schemes based on either mappings or template matching are vulnerable to image variations due to rotation, translation, facial expressions, or local illumination conditions. This entails the importance of a proper preprocessing that can compensate for such variations. A simple template matching, when combined with the geometrically correlated feature-based detection as a preprocessing, is shown to outperform mapping techniques in terms of both the accuracy and the robustness to image variations.
Keywords
Face recognition; Mapping; Principal component analysis; Linear discriminant analysis; Template matching; Generalization; Computational infeasibility;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 S. H. Lin, S. Y. Kung, L. J. Lin, Face recognition/detection by probabilistic decision-based neural network, IEEE Transactions on Neural Networks, Vol. 8, No. 1, (1997) 114-132   DOI   ScienceOn
2 B. Moghaddam, W. Wahid, A. Pentland, Beyond Eigenfaces: Probabilistic Matching for Face Recognition, Proc. of Int'l Conf. on Automatic Face and Gesture Recognition, (1998) 30-35   DOI
3 A. Pentland, B. Moghaddam, T. Starner, View-based and Modular Eigenspaces for Face Recognition, Proc. of IEEE Conf. on Computer-Vision and Pattern Recognition (CVPR'94), (1994) 84-91   DOI
4 R. Brunelli, T. Poggio, Face recognition through geometrical features, Computer Vision, ECCV '92, Lecture Notes in Computer Science, (1992) 792-800
5 이대호, 박영태, 기하학적 특징에 기반한 순수 얼굴영역 검출기법, 한국정보과학회 논문집 (2003)   과학기술학회마을
6 A.M. Martinez, R. Benavente, The AR Face Database, CVC Technical Report #24, June (1998)
7 T. Sim, R. Sukthankar, M. D. Mullin, S. Baluja, High-performance memory-based recognition for visitor identification, Tech. Report JPRC-TR-1999-001-1, Just Research, (1999)
8 V. Brennan, J. Principe, Face classification using a multiresolution principal component analysis, Neural Networks for Signal Processing VIII, Proceedings of the 1998 IEEE Signal Processing Society Workshop, (1998) 506-515   DOI
9 K. Etemad, R. Chellappa, Discriminant analysis for recognition of human face images, J. Opt. Soc. Amer. Vol. 14, No. 8, (1997) 1724-1733   ScienceOn
10 C. Liu, H. Wechsler, Enhanced Fisher Linear Discriminant Models for Face Recognition, 14th Int'l Conf. on Pattern Recognition, ICPR'98, Brisbane, Australia, August (1998) 17-20   DOI
11 R. Brunelli and T. Poggio, 'Face Recognition: Features versus Templates,' IEEE Trans. PAMI. , Vol. 15, pp.1042-1052, 1993   DOI   ScienceOn
12 M. A. Turk, A. P. Pentland, Face recognition using eigenfaces, Int. Conf. on Pattern Recognition, (1991) 586-591
13 M. Kirby and L. Sirovich, Application of the Karhunen-Loeve procedure for the characterization of human faces, IEEE Transaction on Pattern Analysis and Machine Intelligence, Vol. 12, (1990) 103-108   DOI   ScienceOn
14 R.O. Duda, P.E. Hart, D.G. Stork, Pattern Classification, 2nd Edition, John Wiley & Sons, (2001)
15 Belhumeur P. N., Hespanha J. P., Kriegmaqn D. J., 'Eigenfaces vs. Fisherfaces : recognition using class specific Linear Projection,' IEEE Trans. on Pattern Analysis and Machine Intell., Vol.19, No.7, pp.711-720, 1997   DOI   ScienceOn
16 A.Martinez and A.Kak: 'PCA versus LDA', IEEE Trans. On PAMI, 23(2):228-233, 2001   DOI   ScienceOn