Browse > Article

앙상블 기계학습을 통한 유전자 발현 조절 기작 분석 동향  

Yu, Seung-Hak (서울대학교)
Baek, Sang-Heon (서울대학교)
Yun, Seong-Ro (서울대학교)
Keywords
Citations & Related Records
연도 인용수 순위
  • Reference
1 Wijaya, Edward, et al. "MotifVoter: a novel ensemble method for fine-grained integration of generic motif finders." Bioinformatics 24.20 (2008): 2288-2295.   DOI
2 Eskin, Eleazar, and Pavel A Pevzner. "Finding composite regulatory patterns in DNA sequences." Bioinformatics 18.suppl 1 (2002): S354-S363.   DOI
3 Wijaya, Edward, et al. "Detection of generic spaced motifs using submotif pattern mining." Bioinformatics 23.12 (2007): 1476-1485.   DOI
4 Workman, C. T., and G. D. Stormo. "ANN-Spec: a method for discovering transcription factor binding sites with improved specificity." Pac Symp Biocomput. Vol. 5. 2000.
5 Ao, Wanyuan, et al. "Environmentally induced foregut remodeling by PHA-4/FoxA and DAF-12/NHR." Science 305.5691 (2004): 1743-1746.   DOI
6 Lewis, Benjamin P., et al. "Prediction of mammalian microRNA targets." Cell 115.7 (2003): 787-798.   DOI   ScienceOn
7 Wang, Xiaowei, and Issam M. E1 Naqa. "Prediction of both conserved and nonconserved microRNA targets in animals." Bioinformatics 24.3 (2008): 325-332.   DOI   ScienceOn
8 Enright, Anton J., et al. "MicroRNA targets in Drosophila." Genome biology 5.1 (2004): R1-R1.
9 Rehmsmeier, Marc, et al. "Fast and effective prediction of microRNA/target duplexes." Rna 10.10 (2004): 1507-1517.   DOI   ScienceOn
10 Maragkakis, Manolis, et al. "Accurate microRNA target prediction correlates with protein repression levels." BMC bioinformatics 10.1 (2009): 295.   DOI   ScienceOn
11 Kertesz, Michael, et al. "The role of site accessibility in microRNA target recognition." Nature genetics 39.10 (2007): 1278-1284.   DOI   ScienceOn
12 Grun, Dominic, et al. "microRNA target predictions across seven Drosophila species and comparison to mammalian targets." PLoS computational biology 1.1 (2005): e13.   DOI
13 SaeTrom, O. L. A , OLASNOVE, and PALSAETROM. "Weighted sequence motifs as an improved seeding step in microRNA target prediction algorithms." Rna 11.7 (2005): 995-1003.   DOI
14 Betel, Doron, et al. "Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites." Genome biology 11.8 (2010): R90.   DOI   ScienceOn
15 Chakravarty, A., et al. "A parameter-free algorithm for improved de novo identification of transcription factor binding sites." BMC Bioinformatics 8 (2007): 29.   DOI
16 Das, Modan K., and Ho-Kwok Dai. "A survey of DNA motif finding algorithms." BMC bioinformatics 8. Suppl 7 (2007): S21.
17 Warner, Jason B., et al. "Systematic identification of mammalian regulatory motifs' target genes and functions." Nature methods 5.4 (2008): 347-353.   DOI
18 Tumer, Kagan, and Joydeep Ghosh. "Error correlation and error reduction in ensemble classifiers." Connection science 8.3-4 (1996): 385-404.   DOI
19 Tompa, Martin, et al. "Assessing computational tools for the discovery of transcription factor binding sites." Nature biotechnology 23.1 (2005): 137-144.   DOI
20 Che, Dongsheng, et al. "BEST: binding-site estimation suite of tools." Bioinformatics 21.12 (2005): 2909-2911.   DOI
21 Carlson, Jonathan M., et al. "SCOPE: a web server for practical de novo motif discovery." Nucleic acids research 35.suppl 2 (2007): W259-W264.   DOI
22 Hughes, Jason D., et al. "Computational identification of Cis-regulatory elements associated with groups of functionally related genes in Saccharomyces cerevisiae." Journal of molecular biology 296.5 (2000): 1205-1214.   DOI   ScienceOn
23 Liu, Xiaole, Douglas L. Brutlag, and Jun S. Liu. "BioProspector: discovering conserved DNA motifs in upstream regulatory regions of co-expressed genes." Pacific symposium on biocomputing. Vol. 6. No. 2001. 2001.
24 Hertz, Gerald Z., and Gary D. Stormo. "Identifying DNA and protein patterns with statistically significant alignments of multiple sequences." Bioinformatics 15.7 (1999): 563-577.   DOI
25 Bailey, Timothy L., and Charles Elkan. "Fitting a mixture model by expectation maximization to discover motifs in bipolymers." (1994): 28-36.
26 Jensen, Shane T., and Jun S. Liu. "BioOptimizer: a Bayesian scoring function approach to motif discovery." Bioinformatics 20.10 (2004): 1557-1564.   DOI
27 Huber, Bertrand R., and Martha L. Bulyk. "Meta-analysis discovery of tissue-specific DNA sequence motifs from mammalian gene expression data." BMC bioinformatics 7.1 (2006): 229.   DOI
28 Carlson, Jonathan M., Arijit Chakravarty, and Robert H. Gross. "BEAM: a beam search algorithm for the identification of cis-regulatory elements in groups of genes." Journal of Computational Biology 13.3 (2006): 686-701.   DOI
29 Carlson, Jonathan M., et al. "Bounded search for de novo identification of degenerate cis-regulatory elements." BMC bioinformatics 7.1 (2006): 254.   DOI
30 Chakravarty, Arijit, et al. "SPACER: identification of cis-regulatory elements with non-contiguous critical residues." Bioinformatics 23.8 (2007): 1029-1031.   DOI
31 Huang, Hsien Da, et al. "Identifying transcriptional regulatory sites in the human genome using an integrated system." Nucleic acids research 32.6 (2004): 1948-1956.   DOI
32 Pavesi, Giulio, et al. "MoD Tools: regulatory motif discovery in nucleotide sequences from co-regulated or homologous genes." Nucleic acids research 34.suppl 2 (2006): W566-W570.   DOI
33 Romer, Katherine A, Guy-Richard Kayombya, and Ernest Fraenkel. "WebMOTIFS: automated discovery, filtering and scoring of DNA sequence motifs using multiple programs and Bayesian approaches." Nucleic acids research 35. suppl 2 (2007): W217-W220.   DOI
34 Liu, X. Shirley, Douglas L. Brutlag, and Jun S. Liu. "An algorithm for finding protein - DNA binding sites with applications to chromatin-immunoprecipitation microarray experiments." Nature biotechnology 20.8 (2002): 835-839.   DOI
35 Lawrence, Charles E., et al. "Detecting subtle sequence signals: a Gibbs sampling strategy for multiple alignment." science 262.5131 (1993): 208-214.   DOI
36 Pavesi, Giulio, et al. "Weeder Web: discovery of transcription factor binding sites in a set of sequences from co-regulated genes." Nucleic acids research 32.suppl 2 (2004): W199-W203.   DOI
37 Hu, Jianjun, Yifeng D. Yang, and Daisuke Kihara. "EMD: an ensemble algorithm for discovering regulatory motifs in DNA sequences." BMC bioinformatics 7.1 (2006): 342.   DOI
38 Thijs, Gert, et al. "A Gibbs sampling method to detect overrepresented motifs in the upstream regions of coexpressed genes." Journal of Computational Biology 9.2 (2002): 447-464.   DOI
39 Bandyopadhyay, Sanghamitra, and Ramkrishna Mitra. "TargetMiner: microRNA target prediction with systematic identification of tissue-specific negative examples." Bioinformatics 25.20 (2009): 2625-2631.   DOI
40 Sturm, Marin, et al. "TargetSpy: a supervised machine learning approach for microRNA target prediction." BMC bioinformatics 11.1 (2010): 292.   DOI
41 Friedman, Yitzhak, Guy Naamati, and Michal Linial. "MiRror: a combinatorial analysis web tool for ensembles of microRNAs and their targets." Bioinformatics 26.15 (2010): 1920-1921.   DOI
42 Nam, Seungyoon, et al. "MicroRNA and mRNA integrated analysis (MMIA): a web tool for examining biological functions of microRNA expression." Nucleic acids research 37.suppl 2 (2009): W356-W362.   DOI   ScienceOn
43 Bisognin, Andrea, et al. "MAGIA2: from miRNA and genes expression data integrative analysis to microRNA - transcription factor mixed regulatory circuits (2012 update)." Nucleic acids research (2012): gks460.
44 Ding, Jiandong, et al. "Genome-wide search for miRNA-target interactions in Arabidopsis thaliana with an integrated approach." BMC genomics 13.Suppl 3 (2012): S3.
45 Alexiou, Panagiotis, et al. "miRGen 2.0: a database of microRNA genomic information and regulation." Nucleic acids research (2009): gkp888.
46 Xiao, Feifei, et al. "miRecords: an integrated resource for microRNA - target interactions." Nucleic acids research 37.suppl 1 (2009): 0105-0110.
47 Cho, Sooyoung, et al. "miRGator v2. 0: an integrated system for functional investigation of microRNAs." Nucleic acids research 39.suppl 1 (2011): D158-D162.   DOI
48 Hsu, Paul WC, et al. "miRNAMap: genomic maps of microRNA genes and their target genes in mammalian genomes." Nucleic acids research 34.suppl 1 (2006): D135-D139.   DOI   ScienceOn
49 Coronnello, Claudia, and Panayiotis V. Benos. "ComiR: combinatorial microRNA target prediction tool." Nucleic acids research 41.W1 (2013): W159-W164.   DOI
50 Yu, Seunghak, et al. "Ensemble learning can significantly improve human microRNA target prediction." Methods (2014).