A Study on Scalability of Profiling Method Based on Hardware Performance Counter for Optimal Execution of Supercomputer |
Choi, Jieun
(한국과학기술정보연구원 슈퍼컴퓨터기술개발센터)
Park, Guenchul (한국과학기술정보연구원 슈퍼컴퓨터기술개발센터) Rho, Seungwoo (한국과학기술정보연구원 슈퍼컴퓨터기술개발센터) Park, Chan-Yeol (한국과학기술정보연구원 슈퍼컴퓨터기술개발센터) |
1 | Top500 [Internet], https://www.top500.org |
2 | B. Yang, X. Ji, X. Ma, X. Wang, T. Zhang, X. Zhu, N. El-Sayed, H. Lan, Y. Yang, J. Zhai, W. Liu, and W. Xue, "End-to-end I/O Monitoring on a Leading Supercomputer," in Proceedings of the 16th USENIX Symposium on Networked Systems Design and Implementation, Boston, MA, USA, pp.379-394, 2019. |
3 | X. Ji, B. Yang, T. Zhang, X. Ma, X. Zhu, X. Wang, N. El-Sayed, J. Zhai, W. Liu, and W. Xue, "Automatic, Application-Aware I/O Forwarding Resource Allocation," in Proceedings of the 17th USENIX Conference on File and Storage Technologies, Boston, MA, USA, pp.265-279, 2019. |
4 | S. Chunduri, S. Parker, P. Balaji, K. Harms, and K. Kumaran, "Characterization of MPI Usage on a Production Supercomputer," in SC18: International Conference for High Performance Computing, Networking, Storage and Analysis, Dallas, TX, USA, pp.386-400, 2018. |
5 | P. Gomez-Sanchez, D. Encinas, J. Panadero, A. Bezerra, S. Mendez, M. Naiouf, A. D. Giusti, D. Rexachs, and E. Luque, "Using AWS EC2 as Test-Bed infrastructure in the I/O system configuration for HPC applications," Journal of Computer Science & Technology, Vol.16, No.2, pp.65-75, 2016. |
6 | B. H. Park, S. Hukerikar, R. Adamson, and C. Engelmann, "Big Data Meets HPC Log Analytics: Scalable Approach to Understanding Systems at Extreme Scale," in 2017 IEEE International Conference on Cluster Computing, Honolulu, HI, USA, pp.758-765, 2017. |
7 | S. Oral, S. S. Vazhkudai, F. Wang, C. Zimmer, C. Brumgard, J. Hanley, G. Markomanolis, R. Miller, D. Leverman, S. Atchley, and V. V. Larrea, "End-to-end I/O Portforlio for the Summit Supercomputing Ecosystem," in SC'19: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, Denver, CO, USA, pp.1-14, 2019. |
8 | G. Wei, H. Yang, Z. Luan, and D. Qian, "iDPL: A Scalable and Flexible Inter-continental Testbed for Data Placement Research and Experiment," in 2017 IEEE Symposium on Computers and Communications, Heraklion, Greece, pp.1158-1163, 2017. |
9 | S. Ilager, R. Muralidhar, K. Rammohanrao, and R. Buyya, "A Data-Driven Frequency Scaling Approach for Deadlineaware Energy Efficient Scheduling on Graphics Processing Units (GPUs), in Proceedings of the 20th IEEE/ACM International Symposium on Cluster, Cloud and Internet, Melbourne, Australia, pp.1-10, 2020. |
10 | S. Wallace, X. Yang, V. Vishwanath, W. E. Allcock, S. Coghlan, M. E. Papka, and Z. Lan, "A Data Driven Scheduling Approach for Power Management on HPC Systems," in SC'16: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, Salt Lake City, Utah, USA, pp.656-666, 2016. |
11 | T. Bridi, "Scalable Optimization-based Scheduling Approaches for HPC Facilities," PhD. Dissertation, University of Bologna, Italy, 2018. |
12 | O. Sarood, A. Langer, A. Gupta, and L. Kale, "Maximizing throughput of Overprovisioned HPC Data Centers Under a strict Power Budget," in SC'14: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, New Orleans, LA, USA, pp.807-818, 2014. |
13 | A. J. Younge, R. E. Grant, J. H. Laros III, M. Levenhagen, S. L. Olivier, K. Pedretti, and L. Ward, "Small Scale to Extreme: Methods for Characterizing Energy Efficiency in Supercomputing Applications," The Sustainable Computing: Informatics and Systems, Vol.21, pp.90-102, 2019. DOI |
14 | Perf [Internet], https://perf.wiki.kernel.org/index.php/Main_Page |
15 | Oprofile [Internet], https://oprofile.sourceforge.io/about/ |
16 | Papi [Internet], http://icl.cs.utk.edu/papi/index.html |
17 | Intel vtune [Internet], https://software.intel.com/content/www/us/en/develop/documentation/vtune-help/top/analyze-performance/hardware-event-based-sampling-collection.html |
18 | AMD uProf [Internet], https://developer.amd.com/wordpress/media/2013/12/User_Guide.pdf |
19 | IBM HPCS Toolkit [Internet], https://researcher.watson.ibm.com/researcher/files/us-hfwen/HPCST_README.pdf |
20 | J. Choi, G. Park, and D. Nam, "Interference-aware coscheduling method based on classification of application characteristics from hardware performance counter using data mining," The Cluster Computing, Vol.23, pp.57-69, 2020. DOI |
21 | PBS Scheduler [Internet], https://www.pbspro.org |
22 | Slurm Scheduler [Internet], https://www.slurm.schedmd.com |
23 | Nurion [Internet], https://www.ksc.re.kr/gsjw/jcs/hd |
24 | Nas Parallel Benchmarks [Internet], https://www.nas.nasa.gov/publiccations/npb.html. |