Browse > Article
http://dx.doi.org/10.3745/KIPSTD.2005.12D.6.921

Development of a general purpose molecular simulation system from microscopic to mesoscopic scales  

Oh, Kwang-Jin (한국과학기술정보연구원 슈퍼컴퓨팅센터)
Abstract
In this paper, a general purpose molecular simulation system which has been developed by the author, are described. One of the most advantageous features is that the molecular simulation system can handle a coarse-grained model as well as an all-atom mode. Therefore, we can simulate mesoscopic phenomena as well as microscopic phenomena with the help of Langevin dynamics simulation and dissipative particle dynamics simulation techniques. Thus we could study anesthesia, protein folding, biopolymer flow in microchannel with single framework, which spans from microscopic to mesoscopic scales. We expect that we can also simulate many other bio/nano systems of technological importance which are not feasible by means of molecular dynamics simulation technique. Finally, performance data are shown and a bottleneck is identified for future optimization.
Keywords
Molecular Simulation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 W.L. Jorgensen, J, Chandrasekhar: J,D. Madura, R.W. Impey, M.L. Klein, 'Comparison of simple potential functions for simulating liquid water', J. Chem. Phys. 79, 926-935 (1983)   DOI
2 FFTW Home Page (http://www.fftw.org)
3 Korea@Home(http://www.koreaathome.org/)
4 D. Brown, H. Minoux, B. Maigret, 'A domain decomposition parallel processing algorithm for molecular dynamics simulations of systems of arbitrary connectivity', Comp. Phys, Commun. 103, 170-186 (1997)   DOI   ScienceOn
5 MacKerell et. al., 'All-atom empirical potential for molecular modeling and dynamics studies of protein', J, Phys. Chem. B, 102, 3586-3616 (1998)   DOI   ScienceOn
6 H.C. Andersen, 'RATILE: A velocity version of the SHAKE algorithm for molecular dynamics calculations', J. Comp Phys., 52, 24-34 (1983)   DOI   ScienceOn
7 K. J. Oh and M. L. Klein, 'A parallel molecular dynamics simulation for a molecular system with bond constraints in NPT ensemble', accepted for publication in Compo Phys. Comm   DOI   ScienceOn
8 D. Brown, J,H.R. Clarke, M. Okuda, and T. Yamazaki, 'A domain decomposition parallel processing algorithm for molecular dynamics simulations of polymers', Comp. Phys. Commun. 83, 1-13 (1994)   DOI   ScienceOn
9 J.-P. Ryckaert, G. Ciccotti, and H.J.C. Berendsen, 'Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes'. J, Comp Chem. 23, 327-341 (1977)
10 Massimo Marchi and Fiero Procacci, 'Coordinates scaling and multiple time step algoritms for simulation of solvated proteins in the NPT ensemble', J. Chem. Phys. 109, 5194-5202 (1998)   DOI   ScienceOn
11 M. E. Tuckerman and G. J. Martyna, 'Understanding modem molecular dynamics: Techniques and application', J. Phys, Chem B, 104, 159-178 (2000)   DOI   ScienceOn
12 Glen J. Martyna, Mark E. Tuckerman, Douglas J. Tobias, and Michael L. Klein, 'Explicit reversible integrators for extended systems dynamics', Mol. Phys. 87, 1117-1157 (1996)   DOI
13 K. Tu, M. Tarek, M. L. Klein, and D. Scharf, 'Effects of Anesthetics on the Structure of a Phospholipid Bilayer: Molecular Dynamics Investigation of Halothane in the Hydrated Liquid Crystal Phase of Dipalmitoylphosphatidylcholine', Biophys, J. 75, 2123-2134 (1998)   DOI   ScienceOn
14 U. Essmann, L. Perera, M.L. Berkowitz, T. Darden, H. Lee, and L.G. Pedersen, 'A smoothe particle mesh Ewald method', J. Chem. Phys, 103, 8577-8593 (1995)   DOI   ScienceOn
15 M. Parrinello and A. Rahman, 'Crystal structure and pair potentials: A molecular-dynamics study', Phys, Rev. Lett. 45, 1196-1199 (1980)   DOI
16 M. Parrinello and A. Rahman, 'Polymorphic transitions in single crystals: A new molecular dynamics method', J. Appl. Phys, 52, 7182-7190 (1981)   DOI   ScienceOn
17 D. J Auerbach, W. Paul, C. Lutz, A. F. Bakker, W. E. Rudge, and F. F. Abraham, 'A special purpose parallel computer for molecular dynamics; motivation, design, implementation, and application', J. Phys. Chem. 91, 4881-4890 (1987)   DOI
18 A. T. Hagler and S. Lifson, 'Energy Functions for Peptides and Proteins: II. The Amide Hydrogen Bond and Calculation of Amide Crystal Properties', J. Am. Chem. Soc. 96, 5327-5335 (1977)   DOI
19 L. Verlet, 'Computer experiments on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules', Phys. Rev. 159, 98-103 (1967)   DOI
20 R. W. Hockney and J.W. Eastwood, Computer simulations using particles, McGraw-Hill, New York (1981)
21 N. Karasawa and W. A. Goddard, 'Acceleration of convergence for lattice sums', J. Phys. Chem. 93, 7320-7327 (1989)   DOI
22 M. P. Allen and D. J. Tildesley, Computer simulation of liquids, Clarendon, Oxford (1987)
23 A. T. Hagler, E. Huler, and S. Lifson, 'Energy Functions for Peptides and Proteins: I. Derivation of a Consistent Force Field Including the Hydrogen Bond from Amide Crystals', J. Am. Chem. Soc. 96, 5319-5327 (1974)   DOI
24 The Amber Molecular Dynamics Package (http://amber.scripps.edu)
25 NAMD-Scalable Molecular Dynamics (http://www.ks.uiuc.edu/Research/namd/)
26 P.J, Hoogerbrugge and J.M.V.A. Koelman, 'Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics', Europhysics. Lett. 19, 155-160 (1992)   DOI   ScienceOn
27 CHARMM (http://www.charmm.org)