Browse > Article
http://dx.doi.org/10.46670/JSST.2022.31.4.244

Fabrication of a Porous Carbon Surface Using Ethanol Vapor Treatment  

Im, Doyeon (Department of Mechanical Design Engineering, Andong National Unversity)
Kim, Geon Hwee (School of Mechanical Engineering, Chungbuk National Unversity)
An, Taechang (Department of Machanical Robotics Engineering, Andong National Unversity)
Publication Information
Journal of Sensor Science and Technology / v.31, no.4, 2022 , pp. 244-248 More about this Journal
Abstract
Recently, several studies on the development of superhydrophobic surfaces using various nano-sized carbon-based materials have been conducted. The superhydrophobic surfaces developed using carbon soot have advantages such as low processing cost and remarkable physical and chemical properties. However, their durability is low. To address this problem, in this study, a superhydrophobic surface with high durability and a multilayer structure was fabricated using ethanol vapor treatment. Candle soot was deposited on an aluminum substrate coated with paraffin wax, and a micro-nano multilayer structure with a size of several micrometers was fabricated via ethanol vapor treatment. The fabricated superhydrophobic surface was confirmed to have a contact angle of at least 156° and high durability. Finally, it was confirmed that ethanol vapor not only changed the nanostructure of carbon but also affected the durability of the structure.
Keywords
Carbon soot; Superhydrophobic surface; Hierarchical nanostructure; Ethanol vapor treatment; Functional surface;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 D. Kim and T. An, "Fabrication of Stable Water/Oil Separation Filter Using Effect of Surface Wettability", J. Sens. Sci. Technol., Vol. 25, No. 3, pp. 213-217, 2016.   DOI
2 X. Tang, W. Huang, Y. Xie, H. Wang, D. Liang, J. Li, and Y. Wang, "Superhydrophobic Hierarchical Structures from Self-Assembly of Cellulose-Based Nanoparticles", ACS Sustainable Chem. Eng., Vol. 9, No. 42, pp. 14101-14111, 2021.   DOI
3 T. F. Qahtan, M. A. Gondal, I. O. Alade, and M. A. Dastageer, "Fabrication of Water Jet Resistant and Thermally Stable Superhydrophobic Surfaces by Spray Coating of Candle Soot Dispersion", Sci Rep., Vol. 7, pp. 7531(1)- 7531(7), 2017.   DOI
4 S. Wu, Y. Du, Y. Alsaid, and X. He, "Superhydrophobic photothermal icephobic surfaces based on candle soot", Proc. of Natl Acad. Sci., Vol. 117, No. 21, pp. 11240-11246, 2020.   DOI
5 K. D. Esmeryan, C. E. Castano, and R. Mohammadi, "Interactions of superhydrophobic carbon soot coatings with short alkyl chain alcohols and fluorocarbon solutions", Colloid Surf. A-Physicochem. Eng. Asp., Vol. 529, pp. 715-724, 2017.   DOI
6 A. Milionis, E. Loth, and I. S. Bayer, "Recent advances in the mechanical durability of superhydrophobic materials", Adv. Colloid Interface Sci., Vol. 229, pp. 57-79, 2016.   DOI
7 N. Cohen, A. Dotan, H. Dodiuk, and S. Kenig, "Superhydrophobic Coatings and Their Durability", Mater. Manuf. Process., Vol. 31, No. 9, pp. 1143-1155, 2016.   DOI
8 T. An, "Fabrication of a Superhydrophobic Water-Repellent Mesh for Underwater Sensors," J. Sens. Sci. Technol., Vol. 22, No. 2, pp. 100-104, 2013.   DOI
9 T. An, S. J. Cho, W. Choi, J. H. Kim, S. T. Lim, and G. Lim, "Preparation of stable superhydrophobic mesh with a biomimetic hierarchical structure", Soft Matter, Vol. 7, No. 21, pp. 9867-9870, 2011.   DOI
10 A. K. Kota, G. Kwon, and A. Tuteja, "The design and applications of superomniphobic surfaces", NPG Asia Mater., Vol. 6, No. 7, p. e109, 2014.   DOI
11 S. Orazbayev, R. Zhumadilov, A. Zhunisbekov, M. Gabdullin, Y. Yerlanuly, A. Utegenov, and T. Ramazanov, "Superhydrophobic carbonous surfaces production by PECVD methods", Appl. Surf. Sci., Vol. 515, p. 146050, 2020   DOI
12 S. M. Lee, I. D. Jung, and J. S. Ko, "The Effect of Micro Nano Multi-Scale Structures on the Surface Wettability", Korean Soc. Mech. Eng., Vol. 32, No. 5, pp. 424-429, 2008.   DOI
13 J. Wang and H. Chen, "Fabrication of a superhydrophobic surface by a template-assisted chemical deposition method", Mater. Express, Vol. 10, No. 8, pp.1346-1351, 2020.   DOI
14 S. J. Cho, T. An, J. Y. Kim, J. Sung, and G. Lim, "Superhydrophobic nanostructured silicon surfaces with controllable broadband reflectance", Chem. Commun., Vol. 47, No. 21, pp. 6108-6110, 2011.   DOI
15 H. A. Hussein, S. I. Wais, and K. R. Khedir, "Superhydrophobic Candle Soot Coating Directly Deposited on Aluminum Substrate with Enhanced Robustness", Coatings, Vol. 12, No. 2, pp. 202(1)-202(12), 2022.
16 L. Yang, H. Fu, C. Yang, W. Tian, P. Wu, and W. Jiang, "Carbon soot with arbitrary wettability deposited on solid surface by ethanol flame method", Colloids Surf. A- Physicochem. Eng. Asp., Vol. 578, p. 123576, 2019.   DOI
17 L. Y. Meng and S. J. Park, "Superhydrophobic carbon-based materials: a review of synthesis, structure, and applications", Carbon lett., Vol. 15, No. 2, pp. 89-104, 2014.   DOI