Browse > Article
http://dx.doi.org/10.46670/JSST.2020.29.6.365

Effect of Noble Metals on Hydrogen Sensing Properties of Metal Oxide-based Gas Sensors  

Mirzaei, Ali (Research Institute of Industrial Science, Hanyang University)
Bang, Jae Hoon (Division of Materials Science and Engineering, Hanyang University)
Kim, Sang Sub (Department of Materials Science and Engineering, Inha University)
Kim, Hyoun Woo (Research Institute of Industrial Science, Hanyang University)
Publication Information
Journal of Sensor Science and Technology / v.29, no.6, 2020 , pp. 365-368 More about this Journal
Abstract
As a green and abundant source of energy, H2 has attracted the attention of researchers for use in different applications. Nevertheless, it is highly flammable, and because of its significantly small size, extreme attention is needed to detect its leakage. In this review, we discuss different effects of noble metals on the H2 gas response and performance of metal oxide-based gas sensors. In this regard, we discuss the effects of noble metals, in combination with metal oxides, on H2 gas detection. The catalytic activity towards H2 gas and the formation of heterojunctions with metal oxides are the main contributions of noble metals to the sensing improvement of H2 gas sensors. Furthermore, in the special case of Pd and somewhat Pt, the formation of PdHx and PtHx also affects the H2 sensing performance. This review paper provides useful information for researchers working in the field of H2 gas detection.
Keywords
Noble metal; Metal oxide; Gas sensor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B. Jang, W. Kim, M.-J. Song, and W. Lee, "Thermal stability of the sensing properties in H2 sensors composed of Pd nanogaps on an elastomeric substrate", Sens. Actuator B, Vol. 240, pp. 186-192, 2017.   DOI
2 G. Korotcenkov, S. D. Han, and J. R. Stetter, "Review of electrochemical hydrogen sensors", Chem. Rev., Vol. 109, No. 3, pp. 1402-1433, 2009.   DOI
3 A. S. Pranti, D. Loof, S. Kunz, V. Zielasek, M. Baumer, and W. Lang, "Characterization of a highly sensitive and selective hydrogen gas sensor employing Pt nanoparticle network catalysts based on different bifunctional ligands", Sens. Actuator B, Vol. 322, pp. 128619(1)-128619(11), 2020.
4 M. Matsumiya, F. Qiu, W. Shin, N. Izu, N. Murayama, and S. Kanzaki, "Thin-film Li-doped NiO for thermoelectric hydrogen gas sensor", Thin Solid Films, Vol. 419, No. 1-2, pp. 213-217, 2002.   DOI
5 S. S. Kalanur, Y.-A. Lee, and H. Seo, "Eye-readable gasochromic and optical hydrogen gas sensor based on CuS-Pd", RSC Adv., Vol. 5, No. 12, pp. 9028-9034, 2015.   DOI
6 N. Matsuyama, S. Okazaki, H. Nakagawa, H. Sone, and K. Fukuda, "Response kinetics of a fiber-optic gas sensor using Pt/WO3 thin film to hydrogen", Thin Solid Films, Vol. 517, No. 16, pp. 4650-4653, 2009.   DOI
7 F. T. Foroushani, H. Tavanai, M. Ranjbar, and H. Bahrami, "Fabrication of tungsten oxide nanofibers via electrospinning for gasochromic hydrogen detection", Sens. Actuator B, Vol. 268, pp. 319-327, 2018.   DOI
8 Y. K. Kim, S.-H. Hwang, S. M. Jeong, K. Y. Son, and S. K. Lim, "Colorimetric hydrogen gas sensor based on PdO/metal oxides hybrid nanoparticles", Talanta, Vol. 188, pp. 356-364, 2018.   DOI
9 U. T. Nakate, R. Ahmad, P. Patil, Y. Yu, and Y.-B. Hahn, "Ultra thin NiO nanosheets for high performance hydrogen gas sensor device", Appl. Surf. Sci., Vol. 506, pp. 144971, 2020.   DOI
10 K. Hassan, A. I. Uddin, and G. -S. Chung, "Fast-response hydrogen sensors based on discrete Pt/Pd bimetallic ultrathin films", Sens. Actuator B, Vol. 234, pp. 435-445, 2016.   DOI
11 A. Dey, "Semiconductor metal oxide gas sensors: A review", Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater., Vol. 229, pp. 206-217, 2018.   DOI
12 P. T. Moseley, "Progress in the development of semiconducting metal oxide gas sensors: a review", Sci. Technol., Vol. 28, No. 8, pp. 082001(1)- 082001(15), 2017.
13 X.-T. Yin, J. Li, D. Dastan, W.-D. Zhou, H. Garmestani, and F. M. Alamgir, "Ultra-high selectivity of H2 over CO with a pn nanojunction based gas sensors and its mechanism", Sens. Actuator B, Vol. 319, pp. 128330(1)- 128330(9), 2020.
14 Y. K. Moon, S.-Y. Jeong, Y. C. Kang, and J.-H. Lee, "Metal oxide gas sensors with Au nanocluster catalytic overlayer:toward tuning gas selectivity and response using a novel bilayer sensor design", ACS Appl. Mater. Interfaces, Vol. 11, No. 35, pp. 32169-32177, 2019.   DOI
15 J.-H. Lee, J.-Y. Kim, J.-H. Kim, A. Mirzaei, H. W. Kim, and S. S. Kim, "Pd-decorated Si nano-horns as sensitive and selective hydrogen gas sensors", Mater. Res. Bull., Vol. 132, pp. 110985(1)- 110985(7), 2020.   DOI
16 J.-H. Kim, A. Mirzaei, H. W. Kim, and S. S. Kim, "Low power-consumption CO gas sensors based on Au-functionalized SnO2-ZnO core-shell nanowires", Sens. Actuator B, Vol. 267, pp. 597-607, 2018.   DOI
17 N. Yamazoe, "New approaches for improving semiconductor gas sensors", Sens. Actuator B, Vol. 5, No. 1, pp. 7-19, 1991.   DOI
18 A. Kaniyoor, R. I. Jafri, T. Arockiadoss, and S. Ramaprabhu, "Nanostructured Pt decorated graphene and multi walled carbon nanotube based room temperature hydrogen gas sensor", Nanoscale, Vol. 1, No. 3, pp. 382-386, 2009.   DOI
19 M. Matsumiya, W. Shin, N. Izu, and N. Murayama, "Nanostructured thin-film Pt catalyst for thermoelectric hydrogen gas sensor", Sens. Actuator B, Vol. 93, No. 1, pp. 309-315, 2003.   DOI
20 A. Esfandiar, S. Ghasemi, A. Irajizad, O. Akhavan, and M. Gholami, "The decoration of TiO2/reduced graphene oxide by Pd and Pt nanoparticles for hydrogen gas sensing", Int. J. Hydrog. Energy, Vol. 37, No. 20, pp. 15423-15432, 2012.   DOI
21 S. Dhall, K. Sood, and R. Nathawat, "Room temperature hydrogen gas sensors of functionalized carbon nanotubes based hybrid nanostructure: role of Pt sputtered nanoparticles", Int. J. Hydrog. Energy, Vol. 42, No. 12, pp. 8392-8398, 2017.   DOI
22 R. Prins, "Hydrogen spillover. Facts and fiction", Chem. Rev., Vol. 112, No. 5, pp. 2714-2738, 2012.   DOI
23 Z. Li, Z. Yao, A. A. Haidry, T. Plecenik, L. Xie, L. Sun, and Q. Fatima, "Resistive-type hydrogen gas sensor based on TiO2: A review", Int. J. Hydrog. Energy, Vol. 43, No. 45, pp. 21114-21132, 2018.   DOI
24 M. S. Barbosa, P. H. Suman, J. J. Kim, H. L. Tuller, J. A. Varela, and M. O. Orlandi, "Gas sensor properties of Agand Pd-decorated SnO micro-disks to NO2, H22 and CO: catalyst enhanced sensor response and selectivity", Sens. Actuator B, Vol. 239, No. 45, pp. 253-261, 2017.   DOI
25 L. Wang and R. T. Yang, "New sorbents for hydrogen storage by hydrogen spillover-a review", Energy Environ. Sci., Vol. 1, No. 2, pp. 268-279, 2008.   DOI
26 A. Gurlo and D. R. Clarke, "High-sensitivity hydrogen detection: Hydrogen-induced swelling of multiple cracked palladium films on compliant substrates", Angew. Chem. Int. Ed., Vol. 50, No. 43, pp. 10130-10132, 2011.   DOI
27 L. F. Zhu, J. C. She, J. Y. Luo, S. Z. Deng, J. Chen, X. W. Ji, and N. S. Xu, "Self-heated hydrogen gas sensors based on Pt-coated W18O49 nanowire networks with high sensitivity, good selectivity and low power consumption", Sens. Actuator B, Vol. 153, No. 2, pp. 354-360, 2011.   DOI
28 C. -H. Han, D.-W. Hong, I.-J. Kim, J. Gwak, S.-D. Han, and K. C. Singh, "Synthesis of Pd or Pt/titanate nanotube and its application to catalytic type hydrogen gas sensor", Sens. Actuator B, Vol. 128, No. 1, pp. 320-325, 2007.   DOI
29 K. Hassan, A. I. Uddin, and G.-S. Chung, "Mesh of ultrasmall Pd/Mg bimetallic nanowires as fast response wearable hydrogen sensors formed on filtration membrane", Sens. Actuator B, Vol. 252, No. 1, pp. 1035-1044, 2017.   DOI
30 A. Mirzaei, H. R. Yousefi, F. Falsafi, M. Bonyani, J.-H. Lee, J.-H. Kim, H. W. Kim, and S. S. Kim, "An overview on how Pd on resistive-based nanomaterial gas sensors can enhance response toward hydrogen gas", Int. J. Hydrog. Energy, Vol. 44, No. 36, pp. 20552-20571, 2019.   DOI
31 Y.-N. Zhang, H. Peng, X. Qian, Y. Zhang, G. An, and Y. Zhao, "Recent advancements in optical fiber hydrogen sensors", Sens. Actuator B, Vol. 244, No. 36, pp. 393-416, 2017.   DOI
32 J.-H. Lee, J.-H. Kim, J.-Y. Kim, A. Mirzaei, H. W. Kim, and S. S. Kim, "Ppb-Level selective hydrogen gas detection of Pd-functionalized In2O3-loaded ZnO nanofiber gas sensors", Sensors, Vol. 19, No. 19, pp. 4276(1)-4276(12), 2019.
33 Q. Liu, J. Yao, Y. Wu, Y. Wang, and G. Ding, "Two operating modes of palladium film hydrogen sensor based on suspended micro hotplate", Int. J. Hydrog. Energy, Vol. 44, No. 21, pp. 11259-11265, 2019.   DOI
34 A. M. Abdalla, S. Hossain, O. B. Nisfindy, A. T. Azad, M. Dawood, and A. K. Azad, "Hydrogen production, storage, transportation and key challenges with applications: A review", Energy Conv. Manag., Vol. 165, pp. 602-627, 2018.   DOI
35 N. X. Thai, N. Van Duy, N. Van Toan, C. M. Hung, N. Van Hieu, and N. D. Hoa, "Effective monitoring and classification of hydrogen and ammonia gases with a bilayer Pt/SnO2 thin film sensor", Int. J. Hydrog. Energy, Vol. 45, No. 3, pp. 2418-2428, 2020.   DOI
36 H.-J. Noh, H.-J. Kim, Y. M. Park, J.-S. Park, and H.-N. Lee, "Complex behavior of hydrogen sensor using nanoporous palladium film prepared by evaporation", Appl. Surf. Sci., Vol. 480, No. 21, pp. 52-56, 2019.   DOI
37 M. Momirlan and T. N. Veziroglu, "The properties of hydrogen as fuel tomorrow in sustainable energy system for a cleaner planet", Int. J. Hydrog. Energy, Vol. 30, No. 7, pp. 795-802, 2005.   DOI
38 F. Dawood, M. Anda, and G. Shafiullah, "Hydrogen production for energy: An overview", Int. J. Hydrog. Energy, Vol. 45, No. 7, pp. 3847-3869, 2020.   DOI
39 Z. Zhu, M. Wang, Y. Meng, Z. Lin, Y. Cui, and W. Chen, "A High-Rate Lithium Manganese Oxide-Hydrogen Battery", Nano Lett., Vol. 20, No. 5, pp. 3278-3283, 2020.   DOI
40 P. Ahmadi, S. H. Torabi, H. Afsaneh, Y. Sadegheih, H. Ganjehsarabi, and M. Ashjaee, "The effects of driving patterns and PEM fuel cell degradation on the lifecycle assessment of hydrogen fuel cell vehicles", Int. J. Hydrog. Energy, Vol. 45, No. 5, pp. 3595-3608, 2020.   DOI
41 W. J. Buttner, M. B. Post, R. Burgess, and C. Rivkin, "An overview of hydrogen safety sensors and requirements", Int. J. Hydrog. Energy, Vol. 36, No. 3, pp. 2462-2470, 2011.   DOI
42 K. Mazloomi and C. Gomes, "Hydrogen as an energy carrier: prospects and challenges", Renew. Sustain. Energy Rev., Vol. 16, No. 5, pp. 3024-3033, 2012.   DOI
43 A. Umar, H. Ammar, R. Kumar, T. Almas, A. A. Ibrahim, M. AlAssiri, M. Abaker, and S. Baskoutas, "Efficient H2 gas sensor based on 2D SnO2 disks: experimental and theoretical studies", Int. J. Hydrog. Energy, Vol. 45, No. 50, pp. 26388-26401, 2020.   DOI