Browse > Article
http://dx.doi.org/10.5369/JSST.2019.29.1.14

NO2 Sensing Characteristics of Si MOSFET Gas Sensor Based on Thickness of WO3 Sensing Layer  

Jeong, Yujeong (Department of Electrical Engineering, and Inter-University Semiconductor Research Center, Seoul National University)
Hong, Seongbin (Department of Electrical Engineering, and Inter-University Semiconductor Research Center, Seoul National University)
Jung, Gyuweon (Department of Electrical Engineering, and Inter-University Semiconductor Research Center, Seoul National University)
Jang, Dongkyu (Department of Electrical Engineering, and Inter-University Semiconductor Research Center, Seoul National University)
Shin, Wonjun (Department of Electrical Engineering, and Inter-University Semiconductor Research Center, Seoul National University)
Park, Jinwoo (Department of Electrical Engineering, and Inter-University Semiconductor Research Center, Seoul National University)
Han, Seung-Ik (Department of Energy Systems Research, Ajou University)
Seo, Hyungtak (Department of Energy Systems Research, Ajou University)
Lee, Jong-Ho (Department of Electrical Engineering, and Inter-University Semiconductor Research Center, Seoul National University)
Publication Information
Abstract
This study investigates the nitrogen dioxide (NO2) sensing characteristics of an Si MOSFET gas sensor with a tungsten trioxide (WO3) sensing layer deposited using the sputtering method. The Si MOSFET gas sensor consists of a horizontal floating gate (FG) interdigitated with a control gate (CG). The WO3 sensing layer is deposited on the interdigitated CG-FG of a field effect transistor(FET)-type gas sensor platform. The sensing layer is deposited with different thicknesses of the film ranging from 100 nm to 1 ㎛ by changing the deposition times during the sputtering process. The sensing characteristics of the fabricated gas sensor are measured at different NO2 concentrations and operating temperatures. The response of the gas sensor increases as the NO2 concentration and operating temperature increase. However, the gas sensor has an optimal performance at 180℃ considering both response and recovery speed. The response of the gas sensor increases significantly from 24% to 138% as the thickness of the sensing layer increases from 100 nm to 1 ㎛. The sputtered WO3 film consists of a dense part and a porous part. As reported in previous work, the area of the porous part of the film increases as the thickness of the film increases. This increased porous part promotes the reaction of the sensing layer with the NO2 gas. Consequently, the response of the gas sensor increases as the thickness of the sputtered WO3 film increases.
Keywords
Gas sensors; $WO_3$; FET-type; $NO_2$ gas; RF magnetron sputtering;
Citations & Related Records
연도 인용수 순위
  • Reference
1 O. S. Wolfbeis, "Fiber-optic chemical sensors and biosensors", Anal. Chem., Vol. 76, No. 12, pp. 3269-3284, 2004.   DOI
2 J. Hodgkinson, and R. P. Tatam, "Optical gas sensing: a review", Meas. Sci. Technol., Vol. 24, No. 1, pp. 012004(1)-012004(59), 2012.   DOI
3 Z. Yunusa, M. N. Hamidon, A. Kaiser, and Z. Awang, "Gas sensors: A review", Sens. Transducers, Vol. 168, No.4, pp. 61-75, 2014.
4 A. W. Hodgson, P. Jacquinot, L. R. Jordan, and P. C. Hauser, "Amperometric gas sensors of high sensitivity", Electroanalysis, Vol. 11, No.10-11, pp. 782-787, 1999.   DOI
5 A. M. Azad, S. A. Akbar, S. G. Mhaisalkar, L. D. Birkefeld, and K. S. Goto, "Solid.state gas sensors: A review", J. Electrochem. Soc., Vol. 139, No. 12, pp. 3690-3704, 1992.   DOI
6 S. R. Morrison, "Semiconductor gas sensors", Sens. Actuators, Vol. 2, pp. 329-341, 1981.   DOI
7 S. S. Shendage, V. L. Patil, S. A. Vanalakar, S. P. Patil, N. S. Harale, J. L. Bhosale, J. H. Kim, and P. S. Patil, "Sensitive and selective $NO_{2}$ gas sensor based on $WO_{3}$ nanoplates", Sens. Actuators, B, Vol. 240, pp. 426-433, 2017.   DOI
8 H. M. Fahad, H. Shiraki, M. Amani, C. Zhang, V. S. Hebbar, W. Gao, H. Ota, M. Hettick, D. Kiriya, Y. Z. Chen, Y. L. Chueh, and A. Javey, "Room temperature multiplexed gas sensing using chemical-sensitive 3.5-nm-thin silicon transistors", Sci. Adv., Vol. 3, No. 3, pp. e1602557, 2017.   DOI
9 C. H. Kim, I. T. Cho, J. M. Shin, K. B. Choi, J. K. Lee, and J. H. Lee, "A new gas sensor based on MOSFET having a horizontal floating-gate", IEEE Electron Device Lett., Vol. 35, No. 2, pp. 265-267, 2013.   DOI
10 Y. Hong, C. H. Kim, J. M. Shin, K. Y. Kim, J. S. Kim, C. S. Hwang, and J. H. Lee, "Highly selective ZnO gas sensor based on MOSFET having a horizontal floating-gate", Sens. Actuators, B, Vol. 232, pp. 653-659, 2016.   DOI
11 Y. Zhao, Z. C. Feng, and Y. Liang, "Pulsed laser deposition of $WO_{3}$-base film for $NO_{2}$ gas sensor application", Sens. Actuators, B, Vol. 66, No.1-3, pp. 171-173, 2000.   DOI
12 C. J. Jin, T. Yamazaki, Y. Shirai, T. Yoshizawa, T. Kikuta, N. Nakatani, and H. Takeda, "Dependence of $NO_{2}$ gas sensitivity of $WO_{3}$ sputtered films on film density", Thin Solid Films, Vol. 474, No. 1-2, pp. 255-260, 2005.   DOI
13 Y. Hong, S. Hong, D. Jang, Y. Jeong, M. Wu, G. Jung, J. H. Bae, J. S. Kim, K. S. Chang, C. B. Jeong, C. S. Hwang, B. G. Park, and J. H. Lee, "A Si FET-type Gas Sensor with Pulse-driven Localized Micro-heater for Low Power Consumption", Proc. of IEEE Int. Electron Devices Meet., pp. 12.6.1-4, San Francisco, US, 2018.
14 H. Xia, Y. Wang, F. Kong, S. Wang, B. Zhu, X. Guo, J. Zhang, Y. Wang, and S. Wu, "Au-doped $WO_{3}$-based sensor for $NO_{2}$ detection at low operating temperature", Sens. Actuators, B, Vol. 134, No. 1, pp. 133-139, 2008.   DOI
15 S. Hong, Y. Hong, Y. Jeong, G. Jung, W. Shin, J. Park, J. K. Lee, D. Jang, J. H. Bae, and J. H. Lee, "Improved CO gas detection of Si MOSFET gas sensor with catalytic Pt decoration and pre-bias effect", Sens. Actuators, B, Vol. 300, pp. 127040, 2019.   DOI
16 P. C. Jong, G. C. M. Meijer, and A. H. M. Roermund, "A $300^{\circ}C$ Dynamic-Feedback Instrumentation Amplifier", IEEE J. Solid State Circuits, Vol. 33, pp. 1999-2009, 1998.   DOI
17 L. G. Teoh, Y. M. Hon, J. Shieh, W. H. Lai, and M. H. Hon, "Sensitivity properties of a novel $NO_{2}$ gas sensor based on mesoporous $WO_{3}$ thin film", Sens. Actuators, B, Vol. 96, No.1-2, pp. 219-225, 2003.   DOI
18 M. A. Chougule, S. Sen, and V. B. Patil, "Fabrication of nanostructured ZnO thin film sensor for $NO_{2}$ monitoring", Ceram. Int., Vol. 38, No. 4, pp. 2685-2692, 2012.   DOI
19 C. Wang, L. Yin, L. Zhang, D. Xiang, and R. Gao, "Metal oxide gas sensors: sensitivity and influencing factors", Sensors, Vol. 10, No. 3, pp. 2088-2106, 2010.   DOI
20 Y. A. Lee, S. S. Kalanur, G. Shim, J. Park, and H. Seo, "Highly sensitive gasochromic $H_{2}$ sensing by nano-columnar $WO_{3}$-Pd films with surface moisture", Sens. Actuators, B, Vol. 238, pp. 111-119, 2017.   DOI
21 M. Hu, J. Zeng, W. Wang, H. Chen, and Y. Qin, "Porous $WO_{3}$ from anodized sputtered tungsten thin films for $NO_{2}$ detection", Appl. Surf. Sci., Vol. 258, No. 3, pp. 1062-1068, 2011   DOI
22 J. Zeng, M. Hu, W. Wang, H. Chen, and Y. Qin, "$NO_{2}$-sensing properties of porous $WO_{3}$ gas sensor based on anodized sputtered tungsten thin film", Sens. Actuators, B, Vol. 161, No. 1, pp. 447-452, 2012.   DOI