Browse > Article
http://dx.doi.org/10.5369/JSST.2007.16.1.062

Design and fabrication of condenser microphone with rigid backplate and vertical acoustic holes using DRIE and wafer bonding technology  

Kwon, Hyu-Sang (KRISS Division of Physical Metrology, Mechanical Metrology Group)
Lee, Kwang-Cheol (KRISS Division of Advanced Technology, Leading-Edge Technology Group)
Publication Information
Abstract
This paper presents a novel MEMS condenser microphone with rigid backplate to enhance acoustic characteristics. The MEMS condenser microphone consists of membrane and backplate chips which are bonded together by gold-tin (Au/Sn) eutectic solder bonding. The membrane chip has 2.5 mm${\times}$2.5 mm, $0.5{\mu}m$ thick low stress silicon nitride membrane, 2 mm${\times}$2 mm Au/Ni/Cr membrane electrode, and $3{\mu}m$ thick Au/Sn layer. The backplate chip has 2 mm${\times}$2 mm, $150{\mu}m$ thick single crystal silicon rigid backplate, 1.8 mm${\times}$1.8 mm backplate electrode, and air gap, which is fabricated by bulk micromachining and silicon deep reactive ion etching. Slots and $50-60{\mu}m$ radius circular acoustic holes to reduce air damping are also formed in the backplate chip. The fabricated microphone sensitivity is $39.8{\mu}V/Pa$ (-88 dB re. 1 V/Pa) at 1 kHz and 28 V polarization voltage. The microphone shows flat frequency response within 1 dB between 20 Hz and 5 kHz.
Keywords
Au/Sn eutectic bonding; Si deep reactive ion etching; MEMS condenser microphone; microphone packaging; rigid backplate; two-chip technology; wafer bonding;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. Maier-Schneider, J. Maibach, and E. Obermeier, 'A new analytical solution for the load-deflection of square membranes', J. Microelectromech. Syst., vol. 4, no. 4, pp. 238-241, 1995   DOI   ScienceOn
2 Microphone Handbook, Bruel & Kj${\ae}$r A/S, N${\ae}$rum, Denmark, 1996
3 J. J. Neumann Jr. and K. J. Gabriel, 'A fully-integrated CMOS-MEMS audio microphone', Transducers'03, pp. 230-233, 2005
4 N. Ono, T. Arita, Y Senjo, and S. Ando, 'Directivity steering principle for biomimicry silicon microphone', Transducers'05, pp. 792-795, 2005
5 D. Schafer, S. Shoaf, and P. Loeppert, 'Micromachined condenser microhpone for hearing aid use', Solid-State Sensor and Actuator Workshop (Hilton Head'98), pp. 27-30, 1998
6 See, for example, http://www.knowlesacoustics.com/or http://www.sonion.com/
7 W. H. Hsieh, T.-J. Yao, and Y.-C. Tai, 'A high performance MEMS thin-film teflon electret microphone', Transducers '99, pp. 1064-1067, 1999
8 D. T. Martin, K. Kadirvel, J. Liu, R. M. Fox, M. Sheplak, and T. Nishida, 'Surface and bulk micromachined dual back-plate condenser microphone', MEMS'05, pp. 319-322, 2005
9 J. W. Weigold, T. J. Brosnihan, J. Bergeron, and X. Zhang, 'A MEMS condenser microphone for consumer applications', MEMS'06, pp. 86-89, 2006
10 고상춘, 전치훈, 장원익, 문석환, 황건, 최창억, '콘덴서형 MEMS 음향센서의 제작 및 음향특성', 제7회 한국 MEMS 학술대회 논문집, pp. 81-84, 2005
11 이경일, 조진우, 이대성, 황학인, 김진우, 이석순, '도금 진동판을 이용한 초소형 정전용량형 음향센서,' 제7회 한국 MEMS 학술대회 논문집, pp. 93-96, 2005
12 P. R. Scheeper, B. Nordstrand, J. O. Gullov, B. Liu, T. Clausen, L. Midjord, and T. Storgaard-Larsen, 'A new measurement microphone based on MEMS technology', J. Microelectromech. Syst., vol. 12, no. 6, pp. 880-891, 2003   DOI   ScienceOn
13 Y. Iguchi, T. Tajima, M. Goto, M. Iwaki, A. Ando, K. Tanioka, F. Takeshi, S. Matsunaga, and Y. Yasuno, 'New fabrication process for high-performance silicon condenser microphone with monocrystalline silicon diaphragm and backplate', MEMS'04, pp. 601-604, 2004
14 G. S. K. Wong and T. F. W. Embleton Handbook of Condenser Microphones, AlP Press, New York, Chap. 3, pp. 37-69, 1995