Browse > Article
http://dx.doi.org/10.14776/piv.2020.27.e25

Trend of Antibiotic Susceptibility of Haemophilus influenzae Isolated from Children, 2014-2019  

Lee, Euntaek (Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine)
Park, Sera (Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine)
Kim, Mina (Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine)
Lee, Jina (Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine)
Publication Information
Pediatric Infection and Vaccine / v.27, no.3, 2020 , pp. 147-157 More about this Journal
Abstract
Purpose: We investigated the trend of antibiotic susceptibility of Haemophilus influenzae over 5 consecutive years. Methods: We analyzed the antibiotic susceptibility of H. influenzae isolated from children aged <18 years, who were admitted to the Asan Medical Center Children's Hospital from March 2014 to April 2019. Antibiotic susceptibility of H. influenzae was determined by the disk diffusion test according to the European Committee on Antimicrobial Susceptibility Testing guidelines. Results: Excluding duplicates, 69 isolates were obtained over the past 5 years. The median age of the patients was 5 years (range, 2.8-8.6 years). The antibiotic susceptibility patterns were as follows: ampicillin (AMP)-susceptible/amoxicillin-clavulanate (AMC)-susceptible (AS/ACS; n=15 [21.7%]), AMP-resistant/AMC-susceptible (AR/ACS; n=21 [30.4%]), and AMP-resistant/AMC-resistant (AR/ACR; n=33 [47.8%]). The prevalence of isolates with AR/ACR phenotype tended to increase from 42.1% in 2014-2015 to 54.5% in 2018-2019 (P=0.342). Compared to 2014-2015, the resistance rates to cefuroxime and ceftriaxone in 2018-2019 increased from 31.6% to 77.3% and from 0.0% to 59.1%, respectively (P=0.003 and P<0.001, respectively). Conclusions: Over the last 5 years, H. influenzae isolates with AR/ACR phenotype and ceftriaxone resistance were frequently observed at our institute. The incidence of resistance to cefuroxime and ceftriaxone has increased significantly.
Keywords
Haemophilus influenzae; Antibiotic resistance;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Thomas E, Guillouzouic A, Juvin ME, Chene AL, Caillon J, Bémer P, et al. Prevalence of Haemophilus influenzae with alteration of PBP 3 sequence over a 1-year period in a French hospital: focus on a clinical failure after ceftriaxone treatment. Diagn Microbiol Infect Dis 2019;93:89-91.   DOI
2 Ferjani S, Sassi I, Saidani M, Mhiri E, Ghariani A, Boutiba Ben Boubaker I, et al. Polymorphism of ftsI gene in Haemophilus influenzae and emergence of cefotaxime resistance in two Tunisian hospitals. New Microbes New Infect 2020;36:100690.   DOI
3 Ubukata K, Morozumi M, Sakuma M, Adachi Y, Mokuno E, Tajima T, et al. Genetic characteristics and antibiotic resistance of Haemophilus influenzae isolates from pediatric patients with acute otitis media after introduction of 13-valent pneumococcal conjugate vaccine in Japan. J Infect Chemother 2019;25:720-6.   DOI
4 Van Dyke MK, Pircon JY, Cohen R, Madhi SA, Rosenblüt A, Macias Parra M, et al. Etiology of acute otitis media in children less than 5 years of age: a pooled analysis of 10 similarly designed observational studies. Pediatr Infect Dis J 2017;36:274-81.   DOI
5 Han MS, Jung HJ, Lee HJ, Choi EH. Increasing prevalence of group iii penicillin-binding protein 3 mutations conferring high-level resistance to beta-lactams among nontypeable Haemophilus influenzae isolates from children in Korea. Microb Drug Resist 2019;25:567-76.   DOI
6 Schotte L, Wautier M, Martiny D, Piérard D, Depypere M. Detection of beta-lactamase-negative ampicillin resistance in Haemophilus influenzae in Belgium. Diagn Microbiol Infect Dis 2019;93:243-9.   DOI
7 Ben-Shimol S, Givon-Lavi N, Leibovitz E, Raiz S, Greenberg D, Dagan R. Impact of widespread introduction of pneumococcal conjugate vaccines on pneumococcal and nonpneumococcal otitis media. Clin Infect Dis 2016;63:611-8.   DOI
8 Pichichero ME. Ten-year study of the stringently defined otitis-prone child in Rochester, NY. Pediatr Infect Dis J 2016;35:1033-9.   DOI
9 Garcia-Cobos S, Campos J, Lazaro E, Roman F, Cercenado E, Garcia-Rey C, et al. Ampicillin-resistant non-beta-lactamase-producing Haemophilus influenzae in Spain: recent emergence of clonal isolates with increased resistance to cefotaxime and cefixime. Antimicrob Agents Chemother 2007;51:2564-73.   DOI
10 Osaki Y, Sanbongi Y, Ishikawa M, Kataoka H, Suzuki T, Maeda K, et al. Genetic approach to study the relationship between penicillin-binding protein 3 mutations and Haemophilus influenzae beta-lactam resistance by using site-directed mutagenesis and gene recombinants. Antimicrob Agents Chemother 2005;49:2834-9.   DOI
11 Ubukata K, Shibasaki Y, Yamamoto K, Chiba N, Hasegawa K, Takeuchi Y, et al. Association of amino acid substitutions in penicillin-binding protein 3 with beta-lactam resistance in beta-lactamase-negative ampicillin-resistant Haemophilus influenzae. Antimicrob Agents Chemother 2001;45:1693-9.   DOI
12 Skaare D, Anthonisen IL, Kahlmeter G, Matuschek E, Natås OB, Steinbakk M, et al. Emergence of clonally related multidrug resistant Haemophilus influenzae with penicillin-binding protein 3-mediated resistance to extended-spectrum cephalosporins, Norway, 2006 to 2013. Euro Surveill 2014;19:20986.
13 Stephen J. Haemophilus influenzae. In: Feigin RD, Cherry JD, editors. Textbook of pediatric infectious diseases. 8th ed. Amsterdam: Elsevier, 2019:1199-1211.
14 Asbell PA, Sanfilippo CM, Sahm DF, DeCory HH. Trends in antibiotic resistance among ocular microorganisms in the United States from 2009 to 2018. JAMA Ophthalmol 2020;138:439-50.   DOI
15 Jung J, Seo E, Yoo RN, Sung H, Lee J. Clinical significance of viral-bacterial codetection among young children with respiratory tract infections: findings of RSV, influenza, adenoviral infections. Medicine (Baltimore) 2020;99:e18504.   DOI
16 Ubukata K. Problems associated with high prevalence of multidrug-resistant bacteria in patients with community-acquired infections. J Infect Chemother 2003;9:285-91.   DOI
17 Kovacs E, Sahin-Tóth J, Tóthpal A, van der Linden M, Tirczka T, Dobay O. Co-carriage of Staphylococcus aureus, Streptococcus pneumoniae, Haemophilus influenzae and Moraxella catarrhalis among three different age categories of children in Hungary. PLoS One 2020;15:e0229021.   DOI
18 Kakuta R, Yano H, Hidaka H, Kanamori H, Endo S, Ichimura S, et al. Molecular epidemiology of ampicillin-resistant Haemophilus influenzae causing acute otitis media in Japanese infants and young children. Pediatr Infect Dis J 2016;35:501-6.   DOI
19 Tristram S, Jacobs MR, Appelbaum PC. Antimicrobial resistance in Haemophilus influenzae. Clin Microbiol Rev 2007;20:368-89.   DOI
20 Vacas-Córdoba M, Cardozo-Espinola C, Puerta-Alcalde P, Cilloniz C, Torres A, Garcia-Vidal C. Empirical treatment of adults with hospital-acquired pneumonia: lights and shadows of the 2016 clinical practice ATS/IDSA guidelines. Rev Esp Quimioter 2017;30 Suppl 1:30-3.
21 Garner JS, Jarvis WR, Emori TG, Horan TC, Hughes JM. CDC definitions for nosocomial infections, 1988. Am J Infect Control 1988;16:128-40.   DOI
22 Bae SM, Lee JH, Lee SK, Yu JY, Lee SH, Kang YH. High prevalence of nasal carriage of β-lactamase-negative ampicillin-resistant Haemophilus influenzae in healthy children in Korea. Epidemiol Infect 2013;141:481-9.   DOI
23 The European Committee on Antimicrobial Susceptibility Testing (EUCAST). Breakpoint tables for interpretation of MICs and zone diameters, version 10.0. Vaxjo: EUCAST, 2020.
24 Tristram SG. A comparison of Etest, M.I.C.Evaluator strips and CLSI broth microdilution for determining {beta}-lactam antimicrobial susceptibility in Haemophilus influenzae. J Antimicrob Chemother 2008;62:1464-6.   DOI
25 Manoharan A, Pai R, Shankar V, Thomas K, Lalitha MK. Comparison of disc diffusion & E test methods with agar dilution for antimicrobial susceptibility testing of Haemophilus influenzae. Indian J Med Res 2003.117:81-7.
26 Barry AL, Fuchs PC, Brown SD. Identification of beta-lactamase-negative, ampicillin-resistant strains of Haemophilus influenzae with four methods and eight media. Antimicrob Agents Chemother 2001;45:1585-8.   DOI
27 Billal DS, Hotomi M, Yamanaka N. Can the Etest correctly determine the MICs of beta-lactam and cephalosporin antibiotics for beta-lactamase-negative ampicillin-resistant Haemophilus influenzae? Antimicrob Agents Chemother 2007;51:3463-4.   DOI
28 Skaare D, Lia A, Hannisdal A, Tveten Y, Matuschek E, Kahlmeter G, et al. Haemophilus influenzae with non-beta-lactamase-mediated beta-lactam resistance: easy to find but hard to categorize. J Clin Microbiol 2015;53:3589-95.   DOI
29 Bae S, Lee J, Lee J, Kim E, Lee S, Yu J, et al. Antimicrobial resistance in Haemophilus influenzae respiratory tract isolates in Korea: results of a nationwide acute respiratory infections surveillance. Antimicrob Agents Chemother 2010;54:65-71.   DOI
30 Kim IS, Ki CS, Kim S, Oh WS, Peck KR, Song JH, et al. Diversity of ampicillin resistance genes and antimicrobial susceptibility patterns in Haemophilus influenzae strains isolated in Korea. Antimicrob Agents Chemother 2007;51:453-60.   DOI
31 Park C, Kim KH, Shin NY, Byun JH, Kwon EY, Lee JW, et al. Genetic diversity of the ftsI gene in β-lactamase-nonproducing ampicillin-resistant and β-lactamase-producing amoxicillin-/clavulanic acid-resistant nasopharyngeal Haemophilus influenzae strains isolated from children in South Korea. Microb Drug Resist 2013;19:224-30.   DOI
32 Dabernat H, Delmas C. Epidemiology and evolution of antibiotic resistance of Haemophilus influenzae in children 5 years of age or less in France, 2001-2008: a retrospective database analysis. Eur J Clin Microbiol Infect Dis 2012;31:2745-53.   DOI
33 Yokota S, Ohkoshi Y, Sato K, Fujii N. High prevalence of beta-lactam-resistant Haemophilus influenzae type b isolates derived from respiratory tract specimens in Japanese patients. Int J Infect Dis 2009;13:584-8.   DOI