Browse > Article
http://dx.doi.org/10.5668/JEHS.2010.36.4.255

Inhaled Nanoparticles and Occupational Health: A Review  

Ku, Bon-Ki (Division of Applied Research and Technology, National Institute for Occupational Safety and Health)
Publication Information
Journal of Environmental Health Sciences / v.36, no.4, 2010 , pp. 255-263 More about this Journal
Abstract
In many fields, nanotechnology is leading to the development of purposely-engineered nanoparticles and devices demonstrating new, unique and non-scalable properties. However, concern has been expressed that these same properties may present unique challenges in terms of the potential health impact. Airborne particles associated with engineered nanoparticles are of particular concern, as they can readily enter the body through inhalation. Research into the potential occupational health risks associated with inhaling engineered nanoparticles is actively being conducted in the U.S. and globally. In this article, the potential occupational health effects of inhaled nanoparticles and methods for measuring exposure to nanoparticles are discussed. Critical research needs in this field are also briefly addressed.
Keywords
nanoparticles; nanotechnology; nanomaterials; occupational health; exposure measurement; real-time monitoring;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ku, B. K. : Determination of the ratio of diffusion charging based surface area to geometric surface area for spherical particles in the size range of 100-900 nm. Journal of Aerosol Science, 41(9), 835-847, 2010.   DOI   ScienceOn
2 Han, J. H., Lee, E. J., Lee, J. H., So, K. P., Lee, Y. H., Bae, G. N., Lee, S. B., Ji, J. H., Cho, M. H. and Yu, I. J. : Monitoring multiwalled carbon nanotube exposure in carbon nanotube research facility. Inhalation Toxicology, 20, 741-749, 2008.   DOI   ScienceOn
3 Brown, D. M., Wilson, M. R., MacNee, W., Stone, V. and Donaldson, K. : Size-dependent proinflammatory effects of ultrafine polystyrene particles: a role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicology and Applied Pharmacology, 175(3), 191-199, 2001.   DOI   ScienceOn
4 Lam, C. W., James, J. T., McCluskey, R. and Hunter, R. L. : Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicological Sciences, 77, 126-134, 2004.
5 Tran, C. L., Buchanan, D., Cullen, R. T., Searl, A., Jones, A. D. and Donaldson, K. : Inhalation of poorly soluble particles. II. Influence of particle surface area on inflammation and clearance. Inhalation Toxicology, 12, 1113-1126, 2000.   DOI   ScienceOn
6 Poland, C. A., Duffin, R., Kinloch, I., Maynard, A., Wallace, W. A. H., Seaton, A., Stone, V., Brown, S., MacNee, W. and Donaldson, K. : Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nature Nanotechnology, 3(7), 423-428, 2008.   DOI   ScienceOn
7 Oberdorster, G., Sharp, Z., Atudorei, V., Elder, A., Gelein, R., Kreyling, W. and Cox, C. : Translocation of inhaled ultrafine particles to the brain. Inhalation Toxicology, 16, 437-445, 2004.   DOI   ScienceOn
8 Oberdorster, G., Sharp, Z., Atudorei, V., Elder, A., Gelein, R., Lunts, A., Kreyling, W. and Cox, C. : Extrapulmonary translocation of ultrafine carbon particles following whole-body inhalation exposure of rats. Journal of Toxicology and Environmental Health A, 65, 1531-1543, 2002.   DOI   ScienceOn
9 Renwick, L. C., Brown, D., Clouter, A. and Donaldson, K. : Increased inflammation and altered macrophage chemotactic responses caused by two ultrafine particles. Occupational and Environmental Medicine, 61, 442-447, 2004.   DOI
10 Duffin, R., Tran, C. L., Clouter, A., Brown, D. M., MacNee, W., Stone, V. and Donaldson, K. : The importance of surface area and specific reactivity in the acute pulmonary inflammatory response to particles. Annals of Occupational Hygiene, 46, 242-245, 2002.   DOI
11 Oberdorster, G., Maynard, A., Donaldson, K., Castranova, V., Fitzpatrick, J., Ausman, K., Carter, J., Karn, B., Kreyling, W., Lai, D., Olin, S., Monteiro-Riviere, N., Warheit, D. and Yang, H. : Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Particle and Fibre Toxicology, 2(8), doi:10.1186/1743-8977-2-8, 2005.   DOI
12 Maynard, A. D. : Responsible nanotech at work. Nanotoday. A Materials Today Suppliment. Dec. 2004.
13 Maynard, A. D. and Kuempel, E. D. : Airborne nanostructured particles and occupational health. Journal of Nanoparticle Research, 7, 587-614, 2005.   DOI
14 The Space Elevator, http://www.niac.usra.edu/files/studies/final_report/521Edwards.pdf
15 Shvedova, A. A., Kisin, E. R., Mercer, R., Murray, A. R., Johnson, V. J., Potapovich, A. I., Tyurina, Y. Y., Gorelik, O., Arepalli, S., Schwegler-Berry, D., Hubbs, A. F., Antonini, J., Evans, D. E., Ku, B. K., Ramsey, D., Maynard, A., Kagan, V. E., Castranova, V., Baron, P.: Unusual inflammatory and fibrogenic pulmonary responses to single walled carbon nanotubes in mice. American Journal of Physiology - Lung Cellular and Molecular Physiolog, 289, L698-L708, 2005.   DOI   ScienceOn
16 Roco, M. C. : Environmentally responsible development of nanotechnology. Environmental Science & Technology, 39(5), 106A-112A, 2005.   DOI   ScienceOn
17 Hirst, N., Brocklebank, M. and Ryder, M. : Containment systems: a design guide. Warwickshire, UK: Institution of Chemical Engineers (IChemE), 2002.
18 Ku, B. K., Maynard, A. D., Baron, P. A. and Deye, G. J. : Observation and measurement of anomalous responses in a differential mobility analyzer caused by ultrafine fibrous carbon aerosols. Journal of Electrostatics, 65(8), 542-548, 2007.   DOI   ScienceOn
19 Maynard, A. D., Aitken, R. J., Butz, T., Colvin, V., Donaldson, K., Oberdorster, G., Philbert, M. A., Ryan, J., Seaton, A., Stone, V., Tinkle, S. S., Tran, L., Walker, N. J. and Warheit, D. B. : Safe handling of nanotechnology. Nature, 444, 267-269, 2006.   DOI   ScienceOn
20 U.S. Environmental Protection Agency. Nanomaterial research strategy. Washington, D.C: Office of Research and Development, U.S. Environmental Protection Agency. EPA 620/K-09/011, 2009.
21 ACGIH : Industrial ventilation: a manual of recommended practice. 26th edn. Cincinnati, OH. ACGIH Signature Publications, 2007.
22 Mazzuckelli, L. F. (Ed.), Methner, M. M., Birch, M. E., Evans, D. E., Ku, B. K., Crouch, K. G. and Hoover, M. D. : Case study: Identification and characterization of potential sources of worker exposure to carbon nanofibers during polymer composite laboratory operations. Journal of Occupational and Environmental Hygiene, 4(12), D125-D130, 2007.   DOI   ScienceOn
23 Old, L. and Methner, M. M. : Engineering case report: effectiveness of local exhaust ventilation (LEV) in controlling engineered nanomaterial emissions during reactor cleanout operations. Journal of Occupational and Environmental Hygiene, 5, D63-D69, 2008.   DOI   ScienceOn
24 Maynard, A. D. and Aitken, R. J. : Assessing exposure to airborne nanomaterials: Current abilities and future requirements. Nanotoxicology, 1(1), 26-41, 2007.   DOI   ScienceOn
25 Methner, M. M., Birch, M. E., Evans, D. E. and Hoover, M. D. : NIOSH Health Hazard Evaluation Report. HETA #2005-0291-3025. University of Dayton Research Institute (UDRI), Dayton Ohio, October, 2006. http://www.cdc.gov/niosh/hhe/reports/pdfs/2005-0291-3025.pdf
26 Fissan, H., Neumann, S., Trampe, A., Pui, D. Y. H. and Shin, W. G. : Rationale and principle of an instrument measuring lung deposited nanoparticle surface area. Journal of Nanoparticle Research, 9, 53-59, 2007.
27 Bello, D., Wardle, B. L., Yamamoto, N., deVilloria, R. G., Garcia, E. J., Hart, A. J., Ahn, K., Ellenbecker, M. J. and Hallock, M. : Exposure to nanoscale particles and fibers during machining of hybrid advanced composites containing carbon nanotubes. Journal of Nanoparticle Research, 11, 231-249, 2009.   DOI
28 Heitbrink, W. A., Evans, D. E., Ku, B. K., Maynard, A. D., Slavin, T. and Peters, T. : Relationship among particle number, surface area, and respirable mass concentration in an automotive engine manufacturing. Journal of Occupational and Environmental Hygiene, 6, 19-31, 2009.
29 Evans, D. E., Heitbrink, W. A., Slavin, T. J. and Peters, T. M. : Ultrafine and respirable particles in an automotive grey iron foundry. The Annals of Occupational Hygiene, 52, 9-21, 2008.
30 Ku, B. K. and Maynard, A. D. : Comparing aerosol surface-area measurement of monodisperse ultrafine silver agglomerates using mobility analysis, transmission electron microscopy and diffusion charging. Journal of Aerosol Science, 36, 1108-1124, 2005.   DOI   ScienceOn
31 Ku, B. K., Emery, M. S., Maynard, A. D., Stolzenburg, M. and McMurry, P. H. : In situ structure characterization of airborne carbon nanofibers by a tandem mobility-mass analysis. Nanotechnology, 17, 3613-3621, 2006.   DOI   ScienceOn
32 NIOSH Document. Approaches to Safe Nanotechnology: An Information Exchange with NIOSH, 2006. http://www.cdc.gov/niosh/topics/nanotech/
33 Maynard, A. D., Ku, B. K., Emery, M. S., Stolzenburg, M. R. and McMurry, P. H. : Measuring particle size-dependent physicochemical structure in airborne single walled carbon nanotube agglomerates. Journal of Nanoparticle Research, 9, 85-92, 2007.
34 Evans, D. E., Ku, B. K., Birch, M. E. and Dunn, K. H. : Aerosol monitoring during carbon nanofiber production: Mobile direct-reading sampling. The Annals of Occupational Hygiene, 54(4), 514-531, 2010.   DOI   ScienceOn
35 Takagi, A., Hirose, A., Nishimura, T., Fukumori, N., Ogata, A., Ohashi, N., Kitajima, S. and Kanno, J. : Induction of mesothelioma in p53+/- mouse by intraperitoneal application of multi-walled carbon nanotube. The Journal of Toxicological Sciences, 33, 105-116, 2008.   DOI   ScienceOn
36 Sayes, C., Fortner, J., Guo, W., Lyon, D., Boyd, A., Ausman, K., Tao, Y. J., Sitharaman, B., Wilson, L. J., Hughes, J. B., West, J. L. and Colvin, V. L. : The differential cytotoxicity of water-soluble fullerenes. Nano Letters, 4, 1881-1887, 2004.   DOI   ScienceOn
37 NIOSH Document. Approaches to Safe Nanotechnology: Managing the Health and Safety Concerns Associated with Engineered Nanomaterials [DHHS (NIOSH) Publication No. 2009-125], 2009. http://www.cdc.gov/niosh/docs/2009-125/pdfs/2009-125.pdf
38 Barlow, P. G., Clouter-Baker, A. C., Donaldson, K., Mac-Callum, J. and Stone, V. : Carbon black nanoparticles induce type II epithelial cells to release chemotaxins for alveolar macrophages. Particle and Fibre Toxicology, 2(11), 1-14, 2005.   DOI
39 Oberdorster, G., Ferin, J. and Lehnert, B. E. : Correlation between particle size, in vivo particle persistence, and lung injury. Environmental Health Perspectives, 102(Suppl 5), 173-179, 1994.   DOI