Browse > Article
http://dx.doi.org/10.5620/eht.2011.26.e2011006

Evaluation of Maternal Toxicity in Rats Exposed to Multi-Wall Carbon Nanotubes during Pregnancy  

Lim, Jeong-Hyeon (College of Veterinary Medicine, Chonnam National University)
Kim, Sung-Hwan (College of Veterinary Medicine, Chonnam National University)
Lee, In-Chul (College of Veterinary Medicine, Chonnam National University)
Moon, Chang-Jong (College of Veterinary Medicine, Chonnam National University)
Kim, Sung-Ho (College of Veterinary Medicine, Chonnam National University)
Shin, Dong-Ho (College of Veterinary Medicine, Chonnam National University)
Kim, Hyoung-Chin (Biomedical Mouse Resource Center, Korea Research Institute of Bioscience and Biotechnology)
Kim, Jong-Choon (College of Veterinary Medicine, Chonnam National University)
Publication Information
Environmental Analysis Health and Toxicology / v.26, no., 2011 , pp. 6.1-6.8 More about this Journal
Abstract
Objectives: The present study investigated the potential adverse effects of multi-wall carbon nanotubes (MWCNTs) on pregnant dams and embryonic development following maternal exposure in rats. Methods: MWCNTs were orally administered to pregnant rats from gestational day (GD) 6 through 19 at dose levels of 0, 8, 40, 200, and 1000 mg/kg/day. During the test period, clinical signs, mortality, body weights, food consumption, serum biochemistry, oxidant-antioxidant status, gross findings, organ weights, and Caesarean section findings were examined. Results: All animals survived to the end of the study. A decrease in thymus weight was observed in the highest dose group. However, maternal body weight, food consumption, serum biochemical parameters, and oxidant-antioxidant balance in the kidneys were not affected by treatment with MWCNTs. No treatment-related differences in gestational index, embryo-fetal mortality, or fetal and placental weights were observed between treated and control groups. Conclusions: The results show that 14-day repeated oral dosing of MWCNTs during pregnancy induces minimal maternal toxicity at 1000 mg/kg/day in rats. Under these experimental conditions, the no-observed-adverse-effect level of MWCNTs is considered to be 200 mg/kg/day for dams and 1000 mg/kg/day for embryonic development.
Keywords
Carbon nanotubes; Pregnancy; Maternal toxicity; Oxidative stress; Serum biochemistry;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Li JG, Li WX, Xu JY, Cai XQ, Liu RL, Li YJ, et al. Comparative study of pathological lesions induced by multiwalled carbon nanotubes in lungs of mice by intratracheal instillation and inhalation. Environ Toxicol 2007; 22(4): 415-421.   DOI   ScienceOn
2 Lam CW, James JT, McCluskey R, Arepalli S, Hunter RL. A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks. Crit Rev Toxicol 2006; 36(3): 189-217.   DOI   ScienceOn
3 Nel A, Xia T, Madler L, Li N. Toxic potential of materials at the nanolevel. Science 2006; 311(5761): 622-627.   DOI
4 Firme CP 3rd, Bandaru PR. Toxicity issues in the application of carbon nanotubes to biological systems. Nanomedicine 2010; 6(2): 245-256.   DOI   ScienceOn
5 Oberdorster G, Oberdorster E, Oberdorster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 2005; 113(7): 823-839.   DOI   ScienceOn
6 Folkmann JK, Risom L, Jacobsen NR, Wallin H, Loft S, Moller P. Oxidatively damaged DNA in rats exposed by oral gavage to C60 fullerenes and single-walled carbon nanotubes. Environ Health Perspect 2009; 117(5): 703-708.   DOI
7 Shvedova AA, Castranova V, Kisin ER, Schwegler-Berry D, Murray AR, Gandelsman VZ, et al. Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocytes cells. J Toxicol Environ Health A 2003; 66(20): 1909-1926.   DOI   ScienceOn
8 Zhu L, Chang DW, Dai L, Hong Y. DNA damage induced by multiwalled carbon nanotubes in mouse embryonic stem cells. Nano Lett 2007; 7(12): 3592-3597.   DOI   ScienceOn
9 Karlsson HL, Cronholm P, Gustafsson J, Moller L. Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol 2008; 21(9): 1726-1732.   DOI   ScienceOn
10 Pacurari M, Yin XJ, Zhao J, Ding M, Leonard SS, Schwegler-Berry D, et al. Raw single-wall carbon nanotubes induce oxidative stress and activate MAPKs, AP-1, NF-kappaB, and Akt in normal and malignant human mesothelial cells. Environ Health Perspect 2008; 116(9): 1211-1217.   DOI   ScienceOn
11 Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with Folin phenol reagent. J Biol Chem 1951; 193(1): 265-275.
12 Takagi A, Hirose A, Nishimura T, Fukumori N, Ogata A, Ohashi N, et al. Induction of mesothelioma in p53+/- mouse by intraperitoneal application of multi-wall carbon nanotube. J Toxicol Sci 2008; 33(1): 105-116.   DOI   ScienceOn
13 Kovacic P, Somanathan R. Mechanism of teratogenesis: electron transfer, reactive oxygen species, and antioxidants. Birth Defects Res C Embryo Today 2006; 78(4): 308-325.   DOI   ScienceOn
14 Chung MK, Kim CY, Kim JC. Reproductive toxicity evaluation of a new camptothecin anticancer agent, CKD-602, in pregnant/lactating female rats and their offspring. Cancer Chemother Pharmacol 2007; 59(3): 383-395.
15 Kim JS, Lee K, Lee YH, Cho HS, Kim KH, Choi KH, et al. Aspect ratio has no effect on genotoxicity of multi-wall carbon nanotubes. Arch Toxicol DOI 10.1007/s00204-010-0574-0.
16 Chen HH, Yu C, Ueng TH, Chen S, Chen BJ, Huang KJ, et al. Acute and subacute toxicity study of water-soluble polyalkylsulfonated C60 in rats. Toxicol Pathol 1998; 26(1): 143-151.   DOI   ScienceOn
17 Aebi H. Catalase in vitro. Methods Enzymol 1984; 105: 121-126.
18 Carlberg I, Mannervik B. Reduction of 2,4,6-trinitrobenzene-sulfonate by glutathione reductase and the effect of NADP+ on the electron transfer, J Biol Chem 1986; 261(4): 1629-1635.
19 Paglia DE, Valentine WN. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 1967; 70(1): 158-169.
20 Habig WH, Jakoby WB, Guthenberg C, Mannervik B, Vander Jagt DL. 2-Propylthiouracil does not replace glutathione for the glutathione transferases. J Biol Chem 1984; 259(12): 7409-7410.
21 Moron MS, Depierre JW, Mannervik B. Levels of glutathione, glutathione reductase and glutathione-S-transferase activities in rat lung and liver. Biochem Biophys Acta 1979; 582(1): 67-78.   DOI   ScienceOn
22 Berton TR, Conti CJ, Mitchell DL, Aldaz CM, Lubet RA, Fischer SM. The effect of vitamin E acetate on ultraviolet-induced mouse skin carcinogenesis. Mol Carcinog 1998; 23(3): 175-184.   DOI   ScienceOn
23 Lee JC, Shin IS, Ahn TH, Kim KH, Moon C, Kim SH, et al. Developmental toxic potential of 1,3-dichloro-2-propanol in Sprague-Dawley rats. Regul Toxicol Pharmacol 2009; 53(1): 63-69.   DOI   ScienceOn
24 Muller J, Huaux F, Moreau N, Misson P, Heilier JF, Delos M, et al. Respiratory toxicity of multi-wall carbon nanotubes. Toxicol Appl Pharmacol 2005; 207(3): 221-231.   DOI   ScienceOn
25 Wirnitzer U, Herbold B, Voetz M, Ragot J. Studies on the in vitro genotoxicity of baytubes, agglomerates of engineered multi-walled carbon-nanotubes (MWCNT). Toxicol Lett 2009; 186(3): 160-165.   DOI   ScienceOn
26 Pauluhn J. Subchronic 13-week inhalation exposure of rats to multiwalled carbon nanotubes: toxic effects are determined by density of agglomerate structures, not fibrillar structures. Toxicol Sci 2010; 113(1): 226-242.   DOI   ScienceOn
27 Bottini M, Bruckner S, Nika K, Bottini N, Bellucci S, Magrini A, et al. Multi-walled carbon nanotubes induce T lymphocyte apoptosis. Toxicol Lett 2006; 160(2): 121-126.   DOI   ScienceOn
28 Bottini M, Tautz L, Huynh H, Monosov E, Bottini N, Dawson MI, et al. Covalent decoration of multi-walled carbon nanotubes with silica nanoparticles. Chem Commun (Camb) 2005; (6): 758-760.
29 Patlolla A, Knighten B, Tchounwou P. Multi-walled carbon nanotubes induce cytotoxicity, genotoxicity and apoptosis in normal human dermal fibroblast cells. Ethn Dis 2010; 20(1 Suppl 1): S1-65-72.
30 Cui D, Tian F, Ozkan CS, Wang M, Gao H. Effect of single wall carbon nanotubes on human HEK293 cells. Toxicol Lett 2005; 155(1): 73-85.   DOI   ScienceOn
31 Di Sotto A, Chiaretti M, Carru GA, Bellucci S, Mazzanti G. Multi-walled carbon nanotubes: Lack of mutagenic activity in the bacterial reverse mutation assay. Toxicol Lett 2009; 184(3): 192-197.   DOI   ScienceOn
32 Liang G, Yin L, Zhang J, Liu R, Zhang T, Ye B, et al. Effects of subchronic exposure to multi-walled carbon nanotubes on mice. J Toxicol Environ Health A 2010; 73(7): 463-470.   DOI   ScienceOn
33 Huczko A, Lange H, Calko E, Grubek-Jaworska H, Droszcz P. Physiological testing of carbon nanotubes: are they asbestos-like? Fullerene Sci Technol 2001; 9(2): 251-254.   DOI   ScienceOn
34 Mitchell LA, Gao J, Wal RV, Gigliotti A, Burchiel SW, McDonald JD. Pulmonary and systemic immune response to inhaled multiwalled carbon nanotubes. Toxicol Sci 2007; 100(1): 203-214.   DOI   ScienceOn