Browse > Article

Relative Importance of Bottom- up vs. Top-down Controls on Size-structured Phytoplankton Dynamics in a Freshwater Ecosystem: I. Temporal and Spatial Variations of Size Structure  

Kim, Jong-Min (Youngsan-River Environment Research Laboratory, National Institute of Environmental Research)
Sin, Yong-Sik (Division of Ocean Engineering, Mokpo National Maritime University)
Publication Information
Abstract
Temporal and spatial variations of size-structured phytoplankton (chlorophyll a) were investigated over an annual cycle (February-October, 2003) to elucidate phytoplankton dynamics in the Juam Reservoir, Chonnam. Physical properties were also measured to investigate the relationship between the properties and temporal and spatial variations of size structured phytoplankton using simple linear regression. Phytoplankton (chlorophyll a) were grouped into three size classes: micro-size(> 20 ${\mu}m$), nano-size (3-20 ${\mu}m$) and pico-size (< 3 ${\mu}m$) in this study. Physical properties included water temperature, light attenuation coefficients, PAR (photosynthetically active radiation) and turbidity. Maximum chlorophyll a was observed in April, 2003 in the lower region whereas a peak of chlorophyll a developed in October, 2003 in the upper region. Large cell-sized phytoplankton (micro-size class)were dominant in the events of the chlorophyll a peaks. Potential mechanisms in the physical properties affecting the size-structured phytoplankton dynamics in the Juam Reservoir were discussed.
Keywords
bottom-up control; top-down control; size-structured phytoplankton; Lake Juam; potential mechanism;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Armstrong, R.A. 1994. Grazing limitation and nutrientlimitation in marine ecosystems: Steady statesolutions of an ecosystem model with multiplefood chains. Limnol. Oceanogr. 39:597-608.
2 Caron, D.A. 1991. Evolving role of protozoa in aquaticnutrientcycles. In: Protozoa and their role inmarine processes (P.C. Ried, C.M. Turley andP.H. Burkill eds.). NATO ASI, Springer-VerlagBerlin Heidelberg G25:387-415 (5.3).
3 Joint, I.R. and Pomroy, A.G. 1986. Photosynthetic characteristics of nanoplankton and picoplankton from the surface mixed layer. Mar. Biol. 92:465- 474.
4 Kemp, W.M. and W.R. Boynton. 1984. Spatial andtemporal coupling of nutrient inputs to estuarineprimary production: the role of particulate transport and decomposition. Bull. Mar. Sci. 35:522-535.
5 Kim, B., J.-H. Park, W.-M. Huh, B.-J. Lim, G.Hwang, K. Choi and J. Choi. 2001. The limnologicalsurvey of major lakes in Korea (4): Lake Juam.Korean. J. Limnol. 34(1):30-44.
6 Lacouture, R.V., B.B.Wagoner, E. Nealley and K.G.Seller. 1990. Dynamics of the microbial food webin the Patuxent River: Autotrophic Picoplankton.In: New perspectives in the Chesapeake System:A Research and Management Partnership (Mihursky,J.A. and Chaney, A. eds.), Chesapeake ResearchConsortium Publication, 137:297-307.
7 Malone, T.C. and M.B. Chervin. 1979. The productionand fate of phytoplankton size fractions inthe plume of Hudson River, New York Bight. Limnol. Oceanogr. 24(4):683-696.
8 Ray, T.R., L.W. Haas and M.E. Sieracki. 1989. Autotrophicpicoplankton dynamics in a ChesapeakeBay sub-estuary. Mar. Ecol. Prog. Ser. 52:273-285.
9 Kirk, J.T.O. 1994. Light and Photosynthesis in AquaticEcosystems. Cambridge University Press,Cambridge, England, pp. 75-77.
10 Walsh, J.J. 1976. Herbivory as a factor in patterns ofnutrient utilization in the sea. Limnol. Oceanor.21:1-13.
11 Lenz, J. 1992. Microbial loop, microbial food web andclassical food chain: Their significance in pelagicmarine ecosystems (Bjoernsen, P K. and Riemann,B. eds.). Schweizerbart’ che verlagsbuchhandlung.Stuttgart, pp. 265-279.
12 Takahashi, M. and P.K. Bienfang. 1983. Size structureof phytoplankton biomass and photosynthesisin subtropical Hawaiian waters. Mar. Biol.76:203-211.
13 Gieskes, W.W. and G.W. Kraay. 1986. Floristic andphysiological differences between shallow and thedeep nanophytoplankton communities in the euphoticzone of the tropical Atlantic ocean revealedby HPLC analysis of pigments. Nature 91:567-576.
14 Lee, H.Y. 2002. Survey on algal distributions andenvironmental factors controlling the algal bloomsin Lake Juam. Final Report submitted to Youngsan-River Environment Research Laboratory,National Institute of Environmental Research,Sooncheon, Korea.
15 Michaels, A.E. and M.W. Silver. 1988. Primary production,sinking fluxes and the microbial foodweb. Deep-Sea Res. 35:473-490.
16 Jung, J.-S. 2002. Hydraulic and hydrological surveyand water quality modeling in Lake Juam. FinalReport submitted to Youngsan-River EnvironmentResearch Laboratory, National Institute ofEnvironmental Research, Sooncheon, S. Korea.
17 Malone, T.C., H.W. Ducklow, E.R. Peele and S.E.Pike. 1991. Picoplankton carbon flux in ChesapeakeBay. Mar. Ecol. Prog. Ser. 78:11-22.
18 Iriarte, A. and D.A. Purdie. 1994. Size distribution ofchlorophyll a biomass and primary production ina temperate estuary (Southampton Water): Thecontribution of photosynthetic picoplankton. Mar.Ecol. Prog. Ser. 115:283-297.
19 Iriarte, A. 1993. Size-fractionated chlorophyll abiomass and picophytoplankton cell density alonga longitudinal axis of a temperate estuary (SouthamptonWater). J. Plankton Res. 15:485-500.
20 Painting, S.J., C.L. Moloney and M.I. Lucas. 1993.Simulation and field measurements of phytoplankton-bacteria-zooplankton interactions inthe southern Benguela upwelling region. Mar.Ecol. Prog. Ser. 100:55-69.
21 Jonas, R. 1992. Microbial processes, organic matterand oxygen demand in the water column. In: Oxygendynamics in the Chesapeake Bay (D.E. Smith,M. Leffler and G. Mackiernan eds.). MarylandSea Grant College, College Park, pp. 113-148.
22 Hein, M., M.F. Pedersen and K. Sand-Jensen. 1995.Size-dependent nitrogen uptake in micro- andmacroalgae. Mar. Ecol. Prog. Ser. 118:247-253.
23 Oviatt, C., P. Lane, F. French III and P. Donaghay.1989. Phytoplankton species and abundance in responseto eutrophication in coastal marine mesocosms.J. Plankton Res. 11:1223-1244.
24 Sin, Y., R.L. Wetzel and I.C. Anderson. 2000. Seasonalvariations of size fractionated phytoplaktonalong the salinity gradient in the York River esruary,Virginia (USA). J Plankton. Res. 22: 1945-1960.
25 Chisholm, S.W. 1992. Phytoplankton size. In: PrimaryProductivity and Biogeochemical cycles inthe Sea (P.G. Falkowski and A.D. Woodhead eds.).Plenum Press, New York, pp. 213-237.
26 Glibert, P.M., C.A. Miller, C. Garside, M.R. Romanand G.B. McManus. 1992. NH4± regeneration andgrazing: interdependent processes in size-fractionated15NH4± experiments. Mar. Ecol. Prog. Ser.82:65-74.