Browse > Article

Effects of Elevated Atmospheric $CO_2$ on Wetland Plants: A Review  

Kim, Seon-Young (Department of Environmental Science and Engineering, Ewha Womans University)
Kang, Ho-Jeong (Department of Environmental Science and Engineering, Ewha Womans University)
Publication Information
Abstract
Last 20 years have witnessed many studies dealing with effects of elevated $CO_2$ on terrestrial ecosystems. However, fewer efforts have been made to elucidate effects on wetland ecosystems, although they play a key role in global biogeochemical cycles. This review synthesizes published data to reveal effects of elevated $CO_2$ on wetland plants. In particular, we focused on the changes in primary production, community structures, evapotranspiration, and nutrients in plants. Many studies have reported increases in primary production in individual plants, but we could not conclude that this will lead to increases in carbon sequestration in wetland ecosystems. The reasons include transport of photosynthates into belowground parts, speciesspecific responses, interaction among different species, and limitation of other nutrients. However, elevated $CO_2$ increased transpiration rates in many wetland plants, suggesting substantial influences on water budgets of wetlands. In addition, similar to terrestrial ecosystems, elevated $CO_2$ increased C/N ratio of many plants, which may impede organic matter decomposition in the long term. However, further information on dynamics of belowground carbon supplied from wetland plants is warranted to assess effects of elevated $CO_2$ on wetland carbon cycle accurately.
Keywords
wetland; elevated $CO_2$; Vegetation; photosynthesis; peatland;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ball, A.S. and B.G. Drake. 1998. Stimulation of soilrespiration by carbon dioxide enrichment of marshvegetation. Soil Biol. Biochem. p. 1203-1205.
2 Cicerone, R.J. and R.S. Oremland. 1988. BiogeochemicalAspects of Atmospheric Methane. Global Biogeochem.Cycles 2: 299-327.
3 Cotrufo, M.F., B. Berg and W. Kratz. 1998. Increasedatmospheric CO2 and litter quality. Environ. Rev.6: 1-12.
4 Cotrufo, M.F. and A. Gorissen. 1997. Elevated CO2enhances belowground C allocation in three perennial grass species at different levels of N availability.New Phytol. 137: 421-431.
5 Curtis, P.S., L.M. Balduman, B.G. Drake and D.F.Whigham. 1990. Elevated atmospheric CO2 effectson belowground processes in C3 and C4 estuarinemarsh communities. Ecology 71: 2001-2006.
6 Field, C.B., C.P. Lund, N.R. Chiariello and B.E. Mortimer.1997. CO2 effects on the water budget ofgrassland microcosm communities. Global ChangeBiol. 3: 197-206.
7 Griffin, K.L., D.T. Tissue, M.H. Turnbull, W. Schusterand D. Whitehead. 2001. Leaf dark respiration asa function of canopy position in Nothofagus fuscatrees grown at ambient and elevated CO2 partialpressures for 5 years. Funct. Ecol. 15: 497-505.
8 Hamilton, J.G., R.B. Thomas and E.H. Delucia. 2001.Direct and indirect effects of elevated CO2 on leafrespiration in a forest ecosystem. Plant Cell Environ.24: 975-982.
9 Hayward, P.M. and R.S. Clymo. 1982. Profiles ofwater content and pore size in Sphagnum andpeat, and their relation to peat bog ecology. Proc.R. Soc. Lond. Series B 215: 299-325.
10 Hoosbeek, M.R., N. van Breemen, F. Berendse, P.Grosvernier and H. Vasander. 2001. Limited effectof increased atmospheric CO2 concentration onombrotrophic bog vegetation. New Phytol. 150:459-463.
11 Jacob, J., C. Greitner and B.G. Drake. 1995. Acclimationof photosynthesis in relation to Rubisco andnon-structural carbohydrate contents and in situcarboxylase activity in Scirpus olneyi grown atelevated CO2 in the field. Plant Cell Environ. 18:875-884.
12 Jauhiainen, J., H. Vasander and J. Matero. 1996.The effect of elevated CO2 and N-input on Sphagnawith different trophy. p. 15-17. In: Laiho, R.,Laine, J. and Vasander, H. (eds), Northern Peatlandsin Global Climatic Change, Publications ofthe Academy of Finland 1/96.
13 Kang, H.J., C. Freeman and T.W. Ashendon. 2001.Effects of elevated CO2 on fen peat biogeochemistry.Sci. Total Environ. 279: 45-50.
14 King, J.S., R.B. Thomas and B.R. Strain. 1997. Morphologyand tissue quality of seedling root systemsof Pinus taeda and Pinus ponderosa as affectedby varying CO2, temperature, and nitrogen.Plant Soil 195: 107-119.
15 Levis, S., J.A. Foley and D. Pollard. 2000. Large scalevegetation feedbacks on a doubled CO2 climate. J.Clim. 13: 1313-1325.
16 Matamala, R. and B.G. Drake. 1999. The influence ofatmospheric CO2 enrichment on plant-soil nitrogeninteractions in a wetland plant community onthe Chesapeake Bay. Plant Soil 210: 93-101.
17 Oechel, W.C., S. Cowles, N. Grulke, S.J. Hastings, B.Lawrence, T. Prudhomme, G. Riechers, B. Strain,D. Tissue and G. Vourlitis. 1994. Transient natureof CO2 fertilization in Arctic tundra. Nature 371:500-503.
18 Owensby, C.E., J.M. Ham, A.K. Knapp, D. Bremerand L.M. Auen. 1997. Water vapour fluxes andtheir impact under elevated CO2 in a C4-tallgrassprairie. Global Change Biol. 3: 189-195.
19 Tissue, D.T., K.L. Griffin, M.H. Turnbull and D. Whitehead.2001. Canopy position and needle ageaffect photosynthetic response in field grown Pinusradiata after five years exposure to elevated carbondioxide partial pressure. Tree Physiol. 21: 915-923.
20 Tissue, D.T. and W.C. Oechel. 1987. Response of Eriophorumvaginatum to elevated CO2 and temperaturein the Alaskan tussock tundra. Ecology 68:401-410.
21 Van Breemen, N. 1995. How Sphagnum bogs downother plants. Trends Ecol. Evol. 10: 270-275.
22 Van der Heijden, E., J. Jauhiainen, J. Silvola, H.Vasander and P.J.C. Kuiper. 2000b. Effects ofelevated atmospheric CO2 concentration and increasednitrogen deposition on growth and chemicalcomposition of ombrotrophic Sphagnum balticumand oligo-mesotrophic Sphagnum papillosum.J. Bryology 22: 175-182.
23 Van der Heijden, E., S.K. Verbeek and P.J.C. Kuiper.2000a. Elevated atmospheric CO2 and increasednitrogen deposition: effects on C and N metabolismand growth of the peat moss Sphagnum recurvumP. Beauv. Var. mucronatum (Russ.) Warnst. GlobalChange Biol. 6: 201-212.
24 Van Ginkel, J.H., A. Gorissen and J.A. van Veen.1997. Carbon and nitrogen allocation in Loliumperenne in response to elevated atmospheric CO2with emphasis on soil carbon dynamics. Plant Soil188: 299-308.
25 Megonigal, J.P. and W.H. Schlesinger. 1997. EnhancedCH4 emissions from a wetland soil exposed toElevated CO2. Biogeochemistry 37: 77-88.
26 Heijmans, M.M.P.D., F. Berendse, W.J. Arp, A.K.Masselink, H. Klees, W. de Visser, and N. VanBreemen. 2001a. Effects of elevated carbon dioxideand increased nitrogen deposition on bog vegetationin the Netherlands. Ecology 89: 268-279.
27 Heijmans, M.M.P.D., W.J. Arp and F. Berendse.2001b. Effects of elevated CO2 and vascular plantson evapotranspiration in bog vegetation. GlobalChange Biol. 7: 817-827.
28 IPCC. 2001. Climate Change 2001: The ScientificBasis, Cambridge University Press, Cambridge.
29 Koch, G.W. and H.A. Mooney. 1996. Response of terrestrialecosystems to elevated CO2: a synthesisand summary. In: Koch, G.W. and Mooney, H.A.(eds) Carbon dioxide and Terrestrial Ecosystems,Academic Press, San Diego, CA., p. 415-429.
30 Long, S.P. and B.G. Drake, 1992. Photosynthetic CO2assimilation and rising atmospheric CO2 concentrations.In: Crop photosynthesis: Spatial andTemporal Determinations. (eds) Baker, N.R. andThomas., H. p. 69-103. Elsevier Science PublisersB.V. Amsterdam, The Netherlands.
31 Mooney, H.A., J. Canadell, F.S. Chapin, J.R. Ehleringer,C. Körner, R.E. McMurtrie, W.J. Parton, L.F.Pitelka and E-D. Schulze. 1999. Ecosystemphysiology responses to global change. In: WalkerB, Steffen W, Canadell J, Ingram J. (eds), The terrestrialbiosphere and global change, CambridgeUniversity Press, Cambridge, UK, p. 141-189.
32 Schrope, M.K., J.P. Chanton, L.H. Allen and J.T.Baker. 1999. Effect of CO2 enrichment and elevatedtemperature on methane emissions from rice,Oryza sativa. Global Change Biol. 5: 587-599.
33 Ziska, L.H., K.P. Hogan, A.P. Smith and B.G. Drake.1991. Growth and photosynthetic response of ninetropical species with long-term exposure to elevatedcarbon dioxide. Oecologia 86: 383-389.
34 Arp, W.J., J.E.M. Van Mierlo, F. Berendse and W.Snijders. 1998. Interaction between elevated CO2concentration, nitrogen and water: effects ongrowth and water use of six perennial plant species.Plant Cell Environ. 21: 1-11.
35 Edwards, N.T. and R.J. Norby. 1999. Below-groundrespiratory response of sugar maple and red maplesaplings to atmospheric CO2 enrichment and elevated air temperature. Plant Soil 206: 85-97.
36 Wand, S.E.J., G.F. Midgley, M.H. Jones, and P.S.Curtis. 1999. Responses of wild C4 and C3 grass(Poaceae) species to elevated atmospheric CO2concentration: a test of current theories and perceptions.Global Change Biol. 5: 723-741.
37 Leadley, P.W., P.A. Niklaus, R. Stocker and C. Korner.1999. A field study of the effects of elevatedCO2 on plant biomass and community structure ina calcareous grassland. Oecologia 118: 39-49.
38 Chu, C.C., J.S. Coleman and H.A. Mooney. 1992.Controls of biomass partitioning between rootsand shoots: atmospheric CO2 enrichment and theacquisition and allocation of carbon and nitrogenin wild radish. Oecologia 89: 580-587.
39 Curtis, P.S., B.G. Drake and D.R. Whigham. 1989.Nitrogen and carbon dynamics in C3 and C4 marshplants grown under elevated CO2 in stiu. Oecologia78: 297-301.
40 Whipps, J.M. and J.M. Lynch. 1983. Substrate flowand utilization in the rhizosphere of cereals. NewPhytol. 95: 605-623.
41 Smolders, A.J.P., H.B.M. Tomassen, H.W. Pijnappel,L.P.M. Lamers and J.G.M. Roelofs. 2001. Substrate-derived CO2 is important in the developmentof Sphagnum spp. New Phytol. 152: 325-332.
42 Arp, W.J. 1991. Effects of source-sink relations onphotosynthetic acclimation to elevated CO2. PlantCell Environ. 14: 869-875.
43 Dacey, V.W.H., B.G. Drake and M.J. Klug. 1994. Stimulationof methane emission by carbon dioxideenrichment of marsh vegetation. Nature 370: 47-49.
44 Jauhiainen, J. and J. Silvola. 1996. The effect of elevatedCO2 concentration on photosynthesis ofSphagnum fuscum. p. 11-14. In: Laiho, R., Laine,J. and Vasander, H. (eds), Northern Peatlands inGlobal Climatic Change, Publications of the Academyof Finland 1/96.
45 Silvola, J. 1990. Combined effects of varying watercontent and CO2 concentration on photosynthesisin Sphagnum fuscum. Hol. Ecol. 13: 224-228.
46 Stulen, I., J. Den Hertog, F. Drelon and J. Roy. 1994.An integrated approach to the influence of CO2 onplant growth using data for three herbaceous species.In: A Whole Plant Perspective on Carbon-Nitrogen Interactions. (eds) Roy, J. and E. Garnier,p. 229-245. SPB Academic Publishing BV,The Hague.
47 Curtis, P.S. and X. Wang. 1998. A meta-analysis ofelevated CO2 effects on woody plant mass, form,and physiology. Oecologia 113: 299-313.
48 Den Hertog, J., I. Stulen, F. Fonseca and P. Delea.1996. Modulation of carbon and nitrogen allocationin Urtica dioica and Plantago major by elevatedCO2: impact of accumulation of non-structuralcarbohydrates and ontogenetic drift. Physiol.Plant. 97: 77-88.
49 Ven der Heijden, E., J. Jauhiainen, J. Matero, M.Eekhof and E. Mitchell. 1998. Effects of elevatedCO2 and nitrogen deposition on Sphagnum species.In: de Kok, L.J., and Stulen, I. (eds), Responsesof Plant Metabolism to Air Pollution, Backhuys,Leiden, p. 475-478.
50 Helal, H.M. and D.R. Sauerbeck. 1984. Influence ofplant roots on C and P metabolism in soil. PlantSoil 76: 175-182.
51 Warwick, K.R., G. Taylor and H. Blum. 1998. Biomassand compositional changes occur in chalkgrassland turves exposed to elevated CO2 for twoseasons in FACE. Global Change Biol. 4: 375-385.
52 Jauhiainen, J., H. Vasander and J. Silvola. 1994.Response of Sphagnum fuscum to N depositionand increased CO2. J. Bryology 18: 83-95.
53 Dakora, F.D. and B.G. Drake. 2000. Elevated CO2stimulates associative N2 fixation in a C3 plant ofthe Chesapeake Bay wetland. Plant Cell Environ.23: 943-953.
54 Heijmans, M.M.P.D., H. Klees, and F. Berendse.2002. Competition between Sphagnum magellanicumand Eriophorum angustifolium as affectedby raised CO2 and increased N deposition. Oikos97: 415-425.
55 Hobbie, E.A., D.M. Olszyk, P.T. Rygiewicz, D.T.Tingey and M.G. Johnson. 2001. Foliar nitrogenconcentrations and natural abundance of 15N suggestnitrogen allocation patterns of Douglas Firand mycorrhizal fungi during development in elevatedcarbon dioxide concentration and temperature.Tree Physiol. 21: 1113-1122.
56 Hymns, G.J., N.R. Baker and S.P. Long. 2001. Growthin elevated CO2 can both increase and decreasephotochemistry and photoinhibition of photosynthesisin a predictable manner. Dactylis glomeratagrown in two levels of nitrogen nutrition. PlantPhysiol. 127: 1204-1211.
57 Jauhiainen, J., H. Vasander and J. Silvola. 1998bNutrient concentration in Sphagnum at increasedN-deposition rates and raised atmospheric CO2concentrations. Plant Ecol. 138: 149-160.
58 Mitchell, E.A.D., A. Buttler, P. Grosvernier, H. Rydin,A. Siegenthaler and J-M. Gobat. 2002. Contrastedeffects of increased N and CO2 supply on two keystonespecies in peatland restoration and implicationsfor global change. Ecology 90: 529-533.
59 Bettarini, I., F.P. Vaccari and F. Miglietta. 1998. ElevatedCO2 concentrations and stomatal density:observations from 17 plant species growing in aCO2 spring in central Italy. Global Change Biol.4: 17-22.
60 Grulke, N.E., G.H. Riechers, W.C. Oechel, U. Hjelm,and C. Jaeger. 1990. Carbon balance in tussocktundra under ambient and elevated atmosphericCO2 Oecologia 83: 485-494.
61 Niklaus, P.A., M. Wohlfender, R. Slegwolf and C.Korner. 2001. Effects of six years of atmosphericCO2 enrichment on plant, soil and soil microbial Cof a calcareous grassland. Plant Soil 233: 189-202.
62 Van der Kooij, T.A.W. and L.J. De Kok. 1996. Impactof elevated CO2 on growth and development ofArabidopsis thaliana L. Phyton 36(2): 173-184
63 Silvola, J. and U. Ahlholm. 1993. Effects of CO2 concentrationand nutrient status on growth, growthrhythm and biomass partitioning in a willow, salixphylicifolia. Oikos 67: 227-234.
64 Drake, B.G., M.S. Muehe, G. Peresta, M.A. Gonzalez-Meler and R. Matamala. 1996. Acclimation ofphotosynthesis, respiration and ecosystem carbonflux of a wetland on Chesapeake Bay, Marylandto elevated atmospheric CO2 concentration. PlantSoil 187: 111-118.
65 Oechal, W.C. and G.L. Vourlitis. 1996. Direct effectsof elevated CO2 on arctic plant and ecosystemfunction. In: Koch, G.W. and Mooney, H.A. (eds),Carbon dioxide and Terrestrial Ecosystems, AcademicPress, San Diego, CA., p. 163-176.
66 Vann, C.D. and J.P. Megonigal. 2002. Productivityresponses of Acer rubrum and Taxodium distichumseedlings to elevated CO2 and flooding. Environ.Pollut. 116: S31-S36.
67 Drake, B.G., M.A. Gonzalez-Meler and S.T. Long.1997. More efficient plants: a consequence of risingatmospheric CO2. Annu. Rev. Plant Physiol.48: 609-639.
68 Gorham, E. 1991. Northern peatlands: role in thecarbon cycle and probable responses to climaticwarming. Ecol. Appl. 1: 182-195.
69 Joabsson, A., T.R. Christensen and B. Wallén. 1999.Vascular plant controls on methane emission fromnorthern peatforming wetlands. Trends Ecol. Evol.14: 385-388
70 Kuehny, J.S., M.M. Peet, P.V. Nelson and D.H. Willis.1991. Nutrient dilution by starch in CO2-enrichedChrysanthemum. J. Exp. Bot. 42: 711-716.
71 Delucia, E., J. Hamilton, S. Naidu, R. Thomas, J.Andrews, A. Finzi, M. Lavine, R. Matamala, J.Mohan, G. Hendry and W. Schlesinger. 1999. NetPrimary production of a forest ecosystem withexperimental CO2 enrichment. Science 284: 1177-1179.
72 Cotrufo, M.F., P. Ineson and A.P. Rowland. 1994.Decomposition of tree leaf litters grown underelevated CO2: effect of litter quality. Plant Soil163: 121-130.
73 Jauhiainen, J., H. Vasander and J. Silvola. 1993. Differencesin response of two Sphagnum species toelevated CO2 and Nitrogen input. Suo 43(4-5):211-215.
74 Jauhiainen, J., J. Silvola and H. Vasander. 1998a.The effects of increased nitrogen deposition andCO2 on Sphagnum angustifolium and S. warnstorfii.Ann. Bot. Fenn. 35: 247-256.
75 Zak, D.R., K.S. Pregitzer, J.S. King and W.E. Holmes.2000. Elevated atmospheric CO2, fine roots andthe response of soil microorganisms: a review andhypothesis. Nesw Phytol. 147: 201-222.
76 Adams, J.M. and H. Faure. 1998. A new estimate ofchanging carbon storage on land since the lastglacial maximum, based on global land ecosystemreconstruction. Global Plane. Change 16-17: 3-241.
77 Azcon-Bieto, J., M.A. Gonzalez-Meler, W. Dohertyand B.G. Drake. 1994. Acclimation of respiratoryO2 uptake in green tissues of field-grown nativespecies after long-term exposure to elevatedatmospheric CO2. Plant Physiol. 106: 1163-1168.
78 Drake, B.G. 1992. A field study of the effects of elevatedCO2 on ecosystem processes in a ChesapeakeBay wetland. Aust. J. Bot. 40: 579-595.
79 Tissue, D.T., R.B. Thomas and B.R. Strain. 1993.Long-term effects of elevated CO2 and nutrientson photosynthesis and Rubisco in loblolly pine.Plant Cell Environ. 16: 859-865.
80 Berendse, F., H. Rydin, N. van Breemen, A. Buttler,S. Saarnio, H. Vasander and B. Wallen. 2001.Raised atmospheric CO2 levels and increased Ndeposition cause shifts in plant species compositionthat affects C sequestration in Sphagnumbogs. Global Change Biol. 7: 591-598.
81 Freeman, C., Lock M.A. and B. Reynolds. 1993. Fluxesof CO2, CH4, and N2O from a Welsh peatland followingsimulation of water table draw-down:potential feedback to climatic change. Biogeochemistry19: 31-60.
82 Jauhiainen, J., J. Silvola, K. Tolonen and H. Vasander.1997. Response of Sphagnum fuscum to waterlevels and CO2 concentration. J. Bryology 19: 391-400.
83 Poorter, H. 1993. Interspecific variation in the growthresponse of plants to an elevated ambient CO2concentration. Vegetatio 104/105: 77-97.
84 Walch-Liu, P., G. Neumann and C. Engels. 2001.Elevated atmospheric CO2 concentration favorsnitrogen partitioning into roots of tobacco plantsunder nitrogen deficiency by decreasing nitrogendemand of the shoot. J. Plant Nutr. 24: 835-854.
85 Körner, C. 1996. The response of complex multispeciessystems to elevated CO2. In: Walker, B. and Steffen,W. (eds) Global Change and Terrestrial Ecosystems.Cambridge University Press, Cambridge,UK. p. 20-42.
86 Norby, R.J., S.D. Wullschleger, C.A. Gunderson,D.W. Johnson and R. Ceuemans. 1999. Tree responsesto rising CO2 in field experiments: implicationsfor the future forest. Plant Cell Environ 22:683-714.
87 Lambers, H. 1987. Growth, respiration, exudationand symbiotic associations: the fate of carbontranslocated to the roots, root Development andFunction. Soc. Exp. Biol. Sem. Ser. 30: 125-145.
88 Van Oosteen, J.J. and R.T. Besford. 1995. Some relationshipsbetween the gas exchange, biochemistryand molecular biology of photosynthesis duringleaf development of tomato plants after transferto different carbon dioxide concentrations. PlantCell Environ. 18: 1253-1266.
89 Arp, W.J. and B.G. Drake. 1991. Increased photosyntheticcapacity of Scirpus olneyi after 4 years ofexposure to elevated CO2. Plant Cell Environ. 14:1003-1006.
90 Cotrufo, M.F. and P. Ineson. 1995. Effects of enhancedatmospheric CO2 and nutrient supply on the qualityand subsequent decomposition of the fine rootsof Betula pendula Roth. and Picea sitchensis(Bong.) Carr. Plant Soil 170: 267-277.
91 Van der Heijden, E., J. Jauhiainen, J. Matero and H. Vasander. 1996. The effects of elevated CO2 andN-input on Sphagnum physiology, p. 57-58. In:Schedule and abstracts of Second InternationalSymposium on the biology of Sphagnum, UniversitéLaval, Québec City, Canada, July 12th-13th.