Browse > Article
http://dx.doi.org/10.14249/eia.2017.26.6.538

Mercury Concentrations of Black-tailed Gull Eggs Depending on the Egg-Laying Order for Marine Environmental Monitoring  

Lee, Jangho (Natural Environment Research Division, National Institute of Environmental Research)
Lee, Jongchun (Natural Environment Research Division, National Institute of Environmental Research)
Jang, Heeyeon (Natural Environment Research Division, National Institute of Environmental Research)
Park, Jong-Hyouk (Saemangeum Regional Environmental Office)
Choi, Jeong-Heui (Natural Environment Research Division, National Institute of Environmental Research)
Lee, Soo Yong (Natural Environment Research Division, National Institute of Environmental Research)
Shim, Kyuyoung (Natural Environment Research Division, National Institute of Environmental Research)
Publication Information
Journal of Environmental Impact Assessment / v.26, no.6, 2017 , pp. 538-552 More about this Journal
Abstract
In this study, total mercury (THg) of Black-tailed Gull (Larus crassirostris) eggs laid on Baengnyeongdo, West Sea of Korea was analyzed in order to compare the THg concentrations of eggs depending on egg-laying order. The first-laid eggs ($mean{\pm}standard$ error, $234.4{\pm}11.2ng/g\;wet$, n=18, t=8.4, p<0.01) significantly had higher THg concentrations than the second-laid eggs ($182.8{\pm}9.1ng/g\;wet$, n=18). Also, the first-laid eggs had higher values in biometrics (length $63.10{\pm}0.49mm$, t=2.4, p<0.05; width $44.51{\pm}0.19mm$, t=4.3, p<0.01; weight $65.53{\pm}0.87g$, t=4.2, p<0.01) than the second-laid eggs (length $62.37{\pm}0.40mm$, width $43.55{\pm}0.17mm$, and weight $62.48{\pm}0.72g$). These differences might be attributed to the amount of food eaten by females relating to males' courtship feeding pattern (males increase courtship feeding rate before the first eggs are laid, and decrease the rate following the laying of the first eggs). Moreover, the lower food intake of females could diminish the quantities of egg albumen that contains a protein binds to most of methylmercury during the period of egg production. Therefore, it is necessary to consistently apply one of egg selection methods (targeted selection (the first-laid egg or the second-laid egg), random selection, and etc.) in one nest for ensuring comparability of mercury concentrations among monitoring sites and monitoring years.
Keywords
Black-tailed Gull; Mercury; Egg-laying Order;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Szumilo E, Fila G, Szubska M, Meissner W, Beldowska M, Falkowska L. 2010. Distribution of total mercury in Herring Gull (Larus argentatus) from the vicinity of the Gulf of Gdansk, Poland. Oceanol and Hydrobiol Stud. 105-114.
2 Won BO. 1981. Illustrated flora & fauna of Korea, vol. 25, avifauna. Ministry of Education.
3 Yu JP, Chun BS, Kim IK, Kang JH. 2006. Hatching and livability of the Black-tailed Gull (Larus crassirostris) in relation to the egg size in Hongdo Island. Kor J Orni. 13(1): 21-26.
4 Yoo JC, Kwon YS. 1997. Some aspects of laying, incubation and hatching in the Black-tailed Gull, Larus crassirostris. Kor J Orni. 4(1): 1-5.
5 Ackerman JT, Herzog MP, Schwarzbach SE. 2013. Methylmercury is the predominant form of mercury in bird eggs: a synthesis. Environ Tech. 47: 2052-2060.   DOI
6 Ackerman JT, Eagles-Smith CA, Herzog MP, Yee JL, Hartman CA. 2016. Egg-laying sequence influences egg mercury concentrations and egg size in three bird species: Implications for contaminant monitoring programs. Environ Toxicol. 35(6): 1458-1469.   DOI
7 Burger J, Gochfeld M, Jeitner C, Burke S, Volz CD, Snigaroff R, Snigaroff D, Shukla T, Shukla S. 2009. Mercury and other metals in eggs and feathers of glaucous-winged gulls (Larus glaucescens) in the Aleutians. Environ Monit Assess. 152(0): 179-194.   DOI
8 Burgess NM, Bond AL, Hebert CE, Neugebauer E, Champoux L. 2013. Mercury trends in herring gull (Larus argentatus) eggs from Atlantic Canada, 1972-2008: temporal change or dietary shift? Environ Pollut. 172: 216-222.   DOI
9 Choi HG, Park JS, Lee PY. 1992. Study on the heavy metal concentration in mussels and oysters from the Korean coastal waters. Bull Korean Fish Soc. 15(6): 485-494.
10 Choi JW, Matsuda M, Kawano M, Wakimoto T, Iseki N, Masunaga S, Hayama SI, Watanuki Y. 2001a. Chlorinated persistent organic pollutants in black-tailed gulls (Larus crassirostris) from Hokkaido, Japan. Chemoshpere. 44: 1375-1382.   DOI
11 Choi JW, Matsuda M, Kawano M, Min BY, Wakimoto T. 2001b. Accumulation profiles of persistent organochlorines in waterbirds from an estuary in Korea. Arch Environ Contam Toxicol. 41: 353-363.   DOI
12 Becker PH. 1992. Egg mercury levels decline with the laying sequence in Charadriiformes. Bull Environ Contam Toxicol. 48: 762-767.
13 Dauwe T, Bervoets L, Blust R, Pinxten R, Eens M. 1999. Are eggshell and egg contents of great and blue tits suitable as indicators of heavy metal pollution?. Belg J Zool. 129(2): 439-447.
14 Ewins PJ, Postupalsky S, Hughes KD, Weseloh DV. 1999. Organochlorine contaminant residues and shell thickness of eggs from known-age female ospreys (Pandion haliaetus) in Michigan during the 1980s. Environ Pollut. 104: 295-304.   DOI
15 Honda K., Min BY, Tatsukawa, R. 1986. Distribution of heavy metals and their agerelated changes in the Eastern Great White Egret, Egretta alba modesta, in Korea. Arch Environ Contam Toxicol. 15: 185-197.   DOI
16 Hong SH, Shim WJ, Han GM, Ha SY, Jang M, Rani M, Hong S, Yeo GY. 2014. Levels and profiles of persistent organic pollutants in resident and migratory birds from an urbanized coastal region of South Korea. Sci of the Total Environ. 470-471:1463-1470.   DOI
17 Heinz GH, Hoffman DJ. 2004. Mercury accumulation and loss in mallard eggs. Environ Toxicol Chem. 23(1): 222-224.   DOI
18 Hwang DW, Kim SG, Choi MK, Lee IS, Kim SS, Choi HG. 2016. Monitoring of trace metals in coastal sediments around Korean Peninsula. Marine Pollut Bull. 102: 230-239.   DOI
19 Islam MM, Bang S, Kim KW, Ahmed MK, Jannat M. 2010. Heavy metals in frozen and canned marine fish of Korea. J Sci Res. 2(3): 549-557.
20 Kim JS, Han SH, Lee DP, Koo TH. 2001. Heavy metal contamination of feral pigeons Columba livia by habitat in Seoul. Korean J Ecol. 24(5): 303-307.
21 Kim JS, Oh JM. 2012. Monitoring of heavy metal contaminants using feathers of shorebirds, Korea. J Environ Monit. 14: 651-656.   DOI
22 Kim JS, Koo TH. 2008. Heavy metal concentrations in feathers of Korean shorebirds. Arch Environ Contam Toxicol 55: 122-128.   DOI
23 Kim JS, Lee DP, Koo TH. 2003. Monitoring of heavy metal contaminations using feathers of feral pigeons Columba livia in Seoul, Korean J Ecol. 26(3): 91-96.   DOI
24 Kim SJ, Lee JN, Lee DP. 2006. Cadmium and lead levels of loons wintering in Korea. J Ecol Field Biol. 29(6): 539-543.   DOI
25 Kim JS, Oh JM. 2014. Heavy metal concentrations in Black-tailed Gull (Larus crassirostris) chicks, Korea. Chemosphere. 112: 370-376.   DOI
26 Kim JS, Oh JM. 2015. Comparison of trace element concentrations between chick and adult Black-tailed Gull (Larus crassirostris). Bull Environ Contam Toxicol. 94: 727-731.   DOI
27 Kim JS, Shin JR, Koo TH. 2009. Heavy metal distribution in some wild birds from Korea. Arch Environ Contam Toxicol. 56:317-324.   DOI
28 Klein R, Bartel-Steinbach M, Koschorreck J, Paulus M, Tarricone K, Teubner D, Wagner G, Weimann T, Veith M. 2012. Standardization of egg collection from aquatic birds for biomonitoring - a critical review, Envrion Sci & Tech. 1-40.
29 Koster MD, Ryckman DP, Weseloh DVC, Struger J. 1996. Mercury levels in great lakes herring gull (Larus argentatus) eggs, 1972-1992. Environ Pollut. 93(3): 261-270.   DOI
30 Kwon YS, Lee WS, Yoo JC. 2006. Clutch size and breeding success of Black-tailed Gull (Larus crassirostris) at Hongdo Island, southeast coast of South Korea. Ocean and Polar Res. 28(2):2 01-207.   DOI
31 Lewis SA, Becker PH, Furness RW. 1993. Mercury levels in eggs, tissues, and feathers of Herring Gulls Larus argentatua from the German Wadden sea coast. Environ Pollut. 80: 293-299.   DOI
32 Lee DP, Honda K, Tatsukawa R. 1987. Comparison of tissue distributions of heavy metals in birds in Japan and Korea. Yamashina Inst Ornith. 19: 103-116.   DOI
33 Lee WS, Koo TH, Park JY. 2000. A field guide to the birds of Korea. LG Evergreen Foundation, Korea.
34 Lee J, Lee J, Lee SH, Kim M, Lee E, Han A, Shim K. 2014. The characteristics of heavy metal accumulations in feral pigeon (Columba livia) feathers for environmental monitoring, J Environ Impact Assess. 23(6): 492-504.   DOI
35 Luo W, Lu Y, Wang T. 2010. Ecological risk assessment of arsenic and metal in sediments of coastal areas of northern Bohai and Yellow Seas, China. AMBIO. 39: 367-375.   DOI
36 Morera M. Sanpera C. Crespo S. Jover L. Ruiz X. 1997. Inter- and intra clutch variability in heavy metals and selenium levels in Audouin's Gull eggs from the Ebro Delta, Spain. Arch Environ Contam Toxicol. 33:71-75.   DOI
37 Morales L, Martrat MG, Olmos J, Parera J, Vicente J, Bertolero A, Abalos M, Lacorte S, Santos FJ, Abad E. 2012. Persistent organic pollutants in gull eggs of two species (Larus michahellis and Larus audouinii) from the Ebro delta Natural Park. Chemosphere. 88: 1306-1316.   DOI
38 Nagel P, Smrekar G, Haag-Wackernagel D. 2001. Use of feral pigeon eggs for urban biomonitoring. Fresenius Environ Bul. 10(1): 18-25.
39 Nam DH, Lee DP, Koo TH. 2001. Factors causing variations of lead and cadmium accumulation of feral pigeons (Columba livia). Korean J Orni. 8(2): 107-115.
40 Nam DH, Lee DP, Koo TH. 2002. The use of feral pigeon's (Columba livia) feathers as a monitor for lead pollution in Korea. Korean J Environ Ecol. 16(3): 233-238.
41 Nam DH, Lee DP, Koo TH. 2003. Comparison of lead and cadmium accumulations in feral pigeons (Columba livia) with different developmental stages from urban and industrial complex areas, Korean J Environ Biol. 21(2), 142-148.
42 Nisianakis P, Giannenas I, Gavriil A, Kontopidis G, Kyriazakis I. 2009. Variation in trace element contents among chicken, turkey, duck, goose, and pigeon eggs analyzed by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Biol Trace Elem Res. 128: 62-71.   DOI
43 Park JS, Jung SY, Son YJ, Choi SJ, Kim MS, Kim JG, Park SH, Lee SM, Chae YZ, Kim MY. 2017. Total mercury, methylmercury and ethylmercury in marine fish and marine fishery products sold in Seoul, Korea. Food Additives & Contaminants: Part B. 4(4): 268-274.   DOI
44 Parsons J. 1970. Relationship between egg size and post-hatching chick mortality in the Herring Gull (Larus argentatus). Nature. 228: 1221-1222.   DOI
45 Parsons J. 1976. Factors determining the number and size of eggs laid by the Herring Gull. The Condor. 78:481-492.   DOI
46 Paulus M, Bartel M, Klein R, Quack M, Tarricone K, Teubner D, Wagner G. 2010. Guideline for sampling and sample treatment, Herring Gull (Larus argentatus). version 2.0.3. Unweltprobenbank.
47 Rajaei F, Esmaili SA, Bahramifar N, Ghasempouri SM, Savabieasfahani M. 2010. Mercury concentration in 3 species of gull Larus ridibundus, Larus minutus, Larus canus from south coast of the Caspian Sea, Iran. Bull Environ Contam Toxicol. 84(6): 716-719.   DOI
48 Royle NJ, Surai PF, McCartney RJ, Speake BK. 1999. Parental investment and egg yolk lipid composition in gulls. Funct Ecol. 13:298-306.   DOI
49 Rudel H, Fliedner A, Kosters Jan. 2010. Twenty years of elemental analysis of marine biota within the German Environmental Specimen Bank-a thorough look at the data. Environ Sci Pollut Res. 17:1025-1034.   DOI
50 Rudel H, Uhlig S, Weingartner M. 2008. Pulverisation and homogenisation of environmental samples by cryomilling. Fraunhofer Institute, Germany.
51 Ruiz X, Jover L, Pedrocchi V, Oro D, Gonzalez-Solis J. 2000. How costly is clutch formation in the audouin's gull Larus audouinii? J of Avian Biol. 31: 567-575.   DOI
52 Sagerup K, Helgason LB, Polder A, Strom H, Josefsen TD, Skare JU, Gabrielsen GW. 2009. Persistent organic pollutants and mercury in dead and dying glaucous gulls (Larus hyperboreus) at Bjornoya (Svalbard). Sci of the Total Environ. 407: 6009-6016.   DOI
53 Saino N, Romano M, Rubolini D, Caprioli M, Ambrosini R, Fasola M. 2010. Food supplementation affects egg albumen content and body size asymmetry among yellow-legged gull siblings. Behav Ecol Sociobiol. 64:1813-1812.   DOI
54 Sanpera C, Morera M, Crespo S, Ruiz X, Jover L. 1997. Trace elements in clutches of Yellow-legged Gulls, Larus cachinnans, from the Medes Islands, Spain. Bull Environ Contam. Toxicol. 59:757-762.   DOI
55 Sanpera C, Morera M, Ruiz X, Jover L. 2000. Variability of mercury and selenium levels in clutches of Audouin's Gulls (Larus audouinii) breeding at the Chafarinas Islands, Southwest Mediterranean. Arch Environ Contam Toxicol. 39: 119-123.
56 Salzer DW, Larkin GJ. 1990. Impact of courtship feeding on clutch and third-egg size in glaucous-winged gulls. Anim Behav. 39(6):1149-1162.   DOI
57 Shin JR, Kim JS, Koo TH. 2008. Lead and cadmium concentrations in Korean wild birds. Korean J Environ Biol. 26(1): 8-14.