Browse > Article
http://dx.doi.org/10.14578/jkfs.2015.104.4.549

Development and Characterization of Chloroplast Simple Sequence Repeat markers in Pinus koraiensis  

Lee, Jei-Wan (Division of Forest Genetic Resources, National Institute of Forest Science)
Baek, Seung-Hoon (Division of Forest Genetic Resources, National Institute of Forest Science)
Hong, Kyung-Nak (Division of Forest Genetic Resources, National Institute of Forest Science)
Hong, Yong-Pyo (Division of Forest Genetic Resources, National Institute of Forest Science)
Lee, Seok-Woo (Division of Forest Genetic Resources, National Institute of Forest Science)
Ahn, Ji-Young (Division of Forest Genetic Resources, National Institute of Forest Science)
Publication Information
Journal of Korean Society of Forest Science / v.104, no.4, 2015 , pp. 549-557 More about this Journal
Abstract
Novel cpSSR primers were developed based on the sequence information of the Pinus koraiensis chloroplast genome. A total of 30 cpSSR loci were detected in the chloroplast genome, and a total of 30 primer sets flanking those loci were designed. All primer sets were successfully amplified for chloroplast DNA in P. koraiensis. The cross-species transferability of the 30 primer sets was considerably high in P. pumila (100%) and P. paviflora (97%) belonging to the same Subgenus (Strobus) of P. koraiensis. Meanwhile, the transferability was relatively low (73%) in P. densiflora and P. sylvestris belonging to Subgenus Pinus. A total of 13 cpSSR loci out of the 30 loci were polymorphic in the Mt. Jumbong population of P. koraiensis. The mean of haploid diversity(H) was 0.512. The number of haplotypes(N) and the haplotype diversity($H_e$) were 25 and 0.992, respectively. Of the 25 haplotypes, 22 were unique in the analyzed population. The unique haplotypes differentiated 22 individuals (79%) from the total of 28 individuals. In conclusion, the novel cpSSR primers developed in this study would be applicable to other Pinus species, especially the subgenus Strobus, and provide a high level of polymorphism for the study of genetic variation of P. koraiensis.
Keywords
Pinus koraiensis; SSR; microsatellite; chloroplast DNA; genetic diversity; transferability;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Vendramin, G.G., Lelli, L., Rossi, P., and Morgante, M. 1996. A set of primers for the amplification of 20 chloroplast microsatellites in Pinaceae. Molecular Ecology 5(4): 595-598.   DOI
2 Wolfe, K.H., Li, W.H., and Sharp, P.M. 1987. Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proceedings of the National Academy of Sciences 84(24): 9054-9058.   DOI
3 Bang, K.H., Lee, J.W., Kim, Y.C., Kim, D.H., Lee, E.H., and Jeung, J.U. 2010. Construction of genomic DNA library of Korean ginseng (Panax ginseng C.A. Meyer) and development of sequence-tagged sites. Biological and Pharmaceutical Bulletin 33(9): 1579-1588.   DOI
4 Deguilloux, M.F., Pemonge, M.H., and Petit, R. J. 2004. Use of chloroplast microsatellites to differentiate oak populations. Annals of Forest Science 61(8): 825-830.   DOI
5 Filiz, E. and Koc, I. 2014. Assessment of chloroplast microsatellite from pine family (Pinaceae) by using bioinformatics tools. Indian Journal of Biotechnology 13: 34-40.
6 Demesure, B., Sodzi, N., and Petit, R.J. 1995. A set of universal primers for amplification of polymorphic non-coding regions of mitochondrial and chloroplast DNA in plants. Molecular Ecology 4(1): 129-134.   DOI
7 Feng, F.J., Han, S.J., and Wang, H.M. 2006. Genetic diversity and genetic differentiation of natural Pinus koraiensis population. Journal of Forestry Research 17(1): 21-24.   DOI
8 Feng, F.J., Zhao, D., Sui, X., and Sun, X.Y. 2011. Study on mating system of Pinus koraiensis in natural population based on cpSSR technology. In Advanced Materials Research 183: 700-704.
9 Grauda, L., Aravanopoulos, F., Bennadji, Z., Changtragoon, S., Fady, B., Kjaer, E.D., Loo, J., Ramamonjisoa, L., and Vendramin, G.G. 2014. Global to local genetic diversity indicators of evolutionary potential in tree species within and outside forests. Forest Ecology and Management 333: 35-51.   DOI
10 Grivet, D., Heinze, B., Vendramin, G.G., and Petit, R.J. 2001. Genome walking with consensus primers: application to the large single copy region of chloroplast DNA. Molecular Ecology Notes 1(4): 345-349.   DOI
11 Hong, K.N., Kwon, Y.J., Chung, J.M., Shin, C.H., Hong, Y.P., and Kang, B.Y. 2001. Spatial genetic structure at a Korean pine (Pinus koraiensis) stand on Mt. Jumbong in Korea based on isozyme studies. Journal of Korean Forest Society 90(1): 43-54.
12 Hong, Y.P., Kwon, H.Y., Han, S.U., Choi, W.Y., and Kim, Y.Y. 2005. Identification of true full sib progenies of Japanese red pine via cpSSR haplotyping. Journal of Korean Forest Society 94(3): 178-182.
13 Kong, W.S. 2004. Species Composition and Distribution of Native Korean Conifers. The Korean Geographical Society 39(4): 528-543.
14 Hong, Y.P., Kwon, H.Y., and Kim, Y.Y. 2006. Distribution pattern of cpSSR variants in Korean populations of Japanese red pine. Journal of Korean Forest Society 95(4): 435-442.
15 Hong, Y.P., Kim, Y.M., Ahn, J.Y., and Park, J.I. 2012. Mating system of seed orchard of Japanese red pines revealed by DNA markers. Journal of Korean Forest Society 99(3): 344-352.
16 Hong, Y.P., Ahn, J.Y. Kim, Y.M., Hong, K.N., and Yang, B.H. 2013. Mating System in Natural Population of Pinus koraiensis at Mt. Seorak Based on Allozyme and cpSSR Markers. Journal of Korean Forest Society 102(2): 264-271.
17 Lee, J.W. 2010. Development of DNA markers for identification of Korean ginseng cultivars. Dongguk University, Ph. D. thesis paper. pp. 113.
18 Lee, J.W., Kim, Y.C., Jo, I.H., Seo, A.Y., Lee, J.H., Kim, O.T., Hyun D.Y., Cha S.W., Bang K.H., and Cho, J.H. 2011. Development of an ISSR-derived SCAR marker in Korean ginseng cultivars (Panax ginseng C.A. Meyer). Journal of Ginseng Research 35(1): 52-59.   DOI
19 Melotto-Passarin, D.M., Tambarussi, E.V., Dressano, K., De Martin, V.F., and Carrer, H. 2011. Characterization of chloroplast DNA microsatellites from Saccharum spp and related species. Genetics Molecular Research 10(3): 2024-2033.
20 Mudunuri, S.B. and Nagarajaram, H.A. 2007. IMEx: imperfect microsatellite extractor. Bioinformatics 23(10): 1181- 1187.   DOI
21 Nei, M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89(3): 583-590.
22 Provan, J., Powell, W., and Hollingsworth, P.M. 2001. Chloroplast microsatellites: new tools for studies in plant ecology and evolution. Trends in Ecology & Evolution 16(3): 142-147.   DOI
23 Peakall, R.O.D. and Smouse, P.E. 2006. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6(1): 288-295.   DOI
24 Potenko, V.V., and Velikov, A.V. 1998. Genetic diversity and differentiation of natural populations of Pinus koraiensis (Sieb. et Zucc.) in Russia. Silvae Genetica 47(4): 202-207.
25 Powell, W., Morgante, M., McDevitt, R., Vendramin, G.G., and Rafalski, J.A. 1995. Polymorphic simple sequence repeat regions in chloroplast genomes: applications to the population genetics of pines. Proceedings of the National Academy of Sciences 92(17): 7759-7763.   DOI
26 Provan, J., Soranzo, N., Wilson, N.J., Goldstein, D.B., and Powell, W. 1999. A low mutation rate for chloroplast microsatellites. Genetics 153(2): 943-947.
27 Provan, J., Soranzo, N., Wilson, N.J., McNicol, J.W., Forrest, G.I., Cottrell, J., and Powell, W. 1998. Gene pool variation in Caledonian and European Scots pine (Pinus sylvestris L.) revealed by chloroplast simple sequence repeats. Proceedings of the Royal Society of London B: Biological Sciences 265(1407): 1697-1705.   DOI
28 Raubeson, L.A. and Jansen, R.K. 1992. A rare chloroplast-DNA structural mutation is shared by all conifers. Biochemical Systematics and Ecology 20(1): 17-24.   DOI
29 Richardson, B.A., Brunsfeld, S.J., and Klopfenstein, N.B. 2002. DNA from bird-dispersed seed and wind-disseminated pollen provides insights into postglacial colonization and population genetic structure of whitebark pine (Pinus albicaulis). Molecular Ecology 11(2): 215-227.   DOI
30 Sablok, G., Mudunuri, S.B., Patnana, S., Popova, M., Fares, M.A., and La Porta, N. 2013. ChloroMitoSSRDB 2.0: Open source repository of perfect and imperfect repeats in organelle genomes for evolutionary genomics. DNA Research 20(2): 127-133.   DOI
31 Schlotterer, C. and Tautz, D. 1992. Slippage synthesis of simple sequence DNA. Nucleic Acids Research 20(2): 211-215.   DOI
32 Sia, E.A., Jinks-Robertson, S., and Petes, T.D. 1997. Genetic control of microsatellite stability. Mutation Research 383: 61-70.   DOI
33 Strauss, S.H., Palmer, J.D., Howe, G.T., and Doerksen, A.H. 1988. Chloroplast genomes of two conifers lack a large inverted repeat and are extensively rearranged. Proceedings of the National Academy of Sciences 85(11): 3898- 3902.   DOI
34 Sugiura, M. 1992. The chloroplast genome. Plant Molecular Biology 19: 149-168.   DOI
35 Sun, X. and Feng, F. 2011. Development and Analysis on Microsatellite Sequence of Chloroplast DNA of Pinus koraiensis. In Bioinformatics and Biomedical Engineering,( iCBBE) 2011 5th International Conference. IEEE. pp. 1-4.
36 Taberlet, P., Gielly, L., Pautou, G., and Bouvet, J. 1991. Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Molecular Biology 17(5): 1105- 1109.   DOI
37 Toth, G., Gaspari, Z., and Jurka, J. 2000. Microsatellites in different eukaryotic genomes: survey and analysis. Genome Research 10(7): 967-981.   DOI
38 Untergasser, A., Cutcutache, I., Koressaar, T., Ye, J., Faircloth, B.C., Remm, M., and Rozen, S.G. 2012. Primer3-new capabilities and interfaces. Nucleic Acids Research 40(15): e115-e115.   DOI