Browse > Article

Effect of Methyl Jasmonate on the Root Growth and the Eleutheroside Accumulation in the Adventitious Root Culture of Eleutherococcus senticosus  

Ahn, Jin-Kwon (Korea Forest Research Institute)
Lee, Wi-Young (Korea Forest Research Institute)
Park, Eung-Jun (Korea Forest Research Institute)
Publication Information
Journal of Korean Society of Forest Science / v.99, no.3, 2010 , pp. 331-336 More about this Journal
Abstract
This study was carried out to investigate the dose-dependent effect of methyl jasmonate on both the adventitious root growth and the accumulation of various eleutherosides in the bioreactor culture of Eleutherococcus senticosus adventitious roots. The highest biomass production (5.4 g DW/L) was observed in the absence of methyl jasmonate and the root growth was significantly decreased by increasing the methyl jasmonate concentration. However, methyl jasmonate stimulated the production of both eleutheroside B, E and $E_1$. The highest level of eleutheroside B (359.9 ${\mu}g$/g DW) was obtained at 40 ${\mu}M$ of methyl jasmonate, while eleutheroside E and $E_1$ was accumulated at the highest level by the addition of 10 ${\mu}M$ of methyl jasmonate. Total eleutheroside was increased up to 3818.1 ${\mu}g$ per liter when 10 ${\mu}M$ of methyl jasmonate was applied. In addition, when the adventitious roots were cultured with 20 ${\mu}M$ of methyl jasmonate, the highest levels of eleutheroside B, E and $E_1$ were observed at the 12th, 3th and 9th days of culture, respectively.
Keywords
Eleutherococcus senticosus; eleutheroside B; eleutheroside E; eleutheroside $E_1$; adventitious root culture; bioreactor;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Zhong, J.J., Chen, F. and Hu, W.W. 1999. High density cultivation of Panax notoginseng cells in stirred bioreactors for the production of ginseng biomass and ginseng saponin. Process Biochemistry 35: 491-496.   DOI   ScienceOn
2 Lazaridou, A., Roukas, T., Biliaderis, C.G. and Vaikousi, H. 2002. Characterization of pullulan produced from beet molasses by Aureobasidium pullulans in a stirred tank reactor under varying agitation. Enzyme and Microbial Technology 31: 122-132.   DOI   ScienceOn
3 Slacanin, I., Marston, A. and Hostettmann, K. 1991. The isolation of Eleutherococcus senticosus constituents by centrifugal partition chromatography and their quantitative determination by high performance liquid chromatography. Phytochemistry Analysis 2: 137-142.   DOI
4 Son, S.H., Choi., S.M., Lee, Y.H., Choi, K.B., Yun, S.R., Kim, J.K., Park, H.J., Kwon, O.W., Noh, E.W., Seon, J.H. and Paek, K.Y. 2000. Large-scale growth and taxane production in cell cultures of Taxus cuspidata (Japanese yew) using a novel bioreactor. Plant Cell Reports 19: 628-633.   DOI   ScienceOn
5 Gundlach, H., Muller, M., Kutchan, T. and Zenk, M. 1992. Jasmonic acid is a signal transducer in elicitorinduced plant cell cultures. Proceeding of National Academy of Science U.S.A. 89: 2389-2393.   DOI   ScienceOn
6 Kang, S.M., Jung, H.Y., Kang, Y.M., Yun, D.J., Bahk, J.D., Yang, J.K. and Choi, M.S. 2004. Effects of methyl jasmonate and salicylic acid on the production of tropane alkaloids and the expression of PMT and H6H in adventitious root cultures of Scopolia parviflora. Plant Science 166: 745-751.   DOI   ScienceOn
7 Murashige, T. and Skoog, F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum 15: 473-497.   DOI
8 Kang, J.S., Linh, P.T., Cai, X.F., Kim, H.S., Lee, J.J. and Kim, Y.H. 2001. Quantitative determination of eleutheroside B and E from Acanthopanax species by high performance liquid chromatography. Archives pharmacal research 24: 407-411.   DOI   ScienceOn
9 Liu, S. and Zhong, J.J. 1997. Simultaneous production of ginseng saponin and polysaccharide by suspension cultures of Panax ginseng nitrogen effects. Enzyme and Microbial Techology 21: 518-524.   DOI   ScienceOn
10 Liu, S. and Zhong, J.J. 1998. Phosphate effect on production of ginseng saponin and polysaccharide by cell suspension cultures of Panax ginseng and Panax quinquefolium. Process Biochemistry 33: 69-74.   DOI   ScienceOn
11 최영해, 김진응. 2002. HPLC-ESI/MS를 이용한 eleutheroside B와 E의 정량. 생약학회지 33(2): 88-91.   과학기술학회마을
12 Akalezi, C.O., Liu., S., Li., Q.S., Yu, J.T. and Zhong, J.J. 1999. Combined effects of initial sucrose concentration and inoculum size on cell growth and ginseng saponin production by suspension cultures of Panax ginseng. Process Biochemistry 34: 639-642.   DOI   ScienceOn
13 임 순, 배기화, 신치균, 김윤명, 김윤수, 2005, Methyl jasmonate 처리에 의한 인삼(Panax ginseng C.A.Meyer) 부정근의 이차대사산물 및 항산화활성 증가. 식물생명공학회지 32(3): 225-231.   과학기술학회마을
14 Bourgaud, F., Gravot, A., Milesi, S. and Gontier, E. 2001. Production of plant secondary metabolites: a historical perspective. Plant Science 161: 839-851.   DOI   ScienceOn
15 Chen, H. and Chen, H. 1999. Effects of methyl jasmonate and salicylic acid on cell growth and crytotashinone formation in Ti transfomed Salivia miltiorrhiza cell suspension cultures. Biotechnology Letter 21: 803-807.   DOI   ScienceOn
16 Creelman, R.A and Mullet, J.E. 1997. Biosynthesis and action of jasmonates in plants. Annual Review. Plant Physiology and Plant Molecular Biology 48: 355-381.   DOI   ScienceOn
17 안진권, 이위영, 박영기. 2007. 가시오갈피의 부정근 배양시 부정근의 생육과 eleutheroside류의 함량에 미치는 ${NO_3}^-$${NH_4}^{+}$ 비율 및 농도의 영향. 한국임학회지 96(1): 48-53.
18 안진권, 박소영, 이위영, 박영기. 2006. 섬오갈피 부정근배양에서 부정근의 생장과 eleutheroside류의 생산에 미치는 jasmonic acid 처리의 영향. 한국임학회지 95(1): 32-37.
19 東醫寶鑑. 1959. 東方書店. pp. 740.
20 李時珍. 本草綱目. 1974. 高文社. pp. 1204.
21 안진권, 이위영, 오성진, 박유헌, 허성두, 최명석. 2000. 가시오갈피나무의 eleutheroside E 및 chlorogenic acid 성분함량. 한국임학회지 89(2): 216-222.
22 Zobayed, S.M.A. and Saxena, P.K. 2003. In vitro grown roots a superior explant for prolific shoot regeneration of St. John's wort (Hypericum perforatum L. cv 'New Stem') in a temporary immersion bioreactor. Plant Science 165: 463-470.   DOI   ScienceOn
23 Suresh, B., Thimmaraju, R., Bhagyalakshmi, N. and Ravishankar, G.A. 2004. Polyamine and methyl jasmonateinfluenced enhancement of betalaine production in hairy root cultures of Beta vulgaris grown in a bubble column reactor and studies on efflux of pigments. Process Biochemistry 39: 2091-2096.   DOI   ScienceOn
24 Tang, W. 1992. Chinese drugs of plant origin, Springer- Verlag, Heidelberg, pp. 1-12.
25 Yu, K.W., Gao, W., Hahn, E.J. and Paek, K.Y. 2002. Jasmonic acid improves ginsenoside accumulation in adventitious root culture of Panax ginseng C.A. Meyer. Biochemical Engineering Journal 11: 211-215.   DOI   ScienceOn
26 Seon, J.H., Yu, K.W., Cui, Y.Y., Kim, M.H., Lee, S.J., Son, S.H. and Paek, K.Y. 1999. Application of bioreactor for the production of saponin by adventitious roots cultures in Panax ginseng, In: Altman A. (Ed.), Plant Biotechnology and In Vitro Biology in the 21st Century, Kluwer Academic Publishers, Netherlands, pp. 329-332.
27 Paek, K.Y. and Chakravarthy, D. 2003. Micropropagation of woody plants using bioreactor, in: Jain, S. M and K. Ishii (Eds). Micropropagation of woody trees and fruits. Kluwer Academic Publishers, Dordresht, pp. 735-755.