Browse > Article

Flame- Extinguishing Concentrations of Inert Gases in Jet Diffusion Flames  

Ji, Jung-Hoon (School of Safety Engineering, Pukyong National University)
Lee, Eui-Ju (School of Safety Engineering, Pukyong National University)
Publication Information
Journal of the Korean Society of Safety / v.24, no.1, 2009 , pp. 21-25 More about this Journal
Abstract
Extinguishing limits of laminar ethylene/oxygen flames in both normal and inverse co-flow jet burner have been determined experimentally and computationally. An inert gas($N_2$, Ar, $CO_2$) was added into the oxidizer to find the critical concentration and the effectiveness of the agents on flame extinction. The experimental results showed that the physical aspect of inert gases was main mechanism for flame blow-out as same as cup burner test, but the flow effect should be considered to determine the extinction concentration. The numerical prediction was performed with modified WSR model and the result was in good agreement with the measurements. The experimental and numerical methods could be used for the assessment of various flame suppression agents such as minimum extinguishing concentration.
Keywords
extinguishing concentration; inert gas; minimum extinguishing concentration; jet diffusion flames; well stirred reactor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Shiling Liu, M.C. Soteriou, M.B. Colket, J.A. Senecal, 'Determination of Cup-burner Extinguishing Concentration using the perfectly stirred Reactor Model', Fire Safety Journal, Vol. 43, pp. 589-597, 2008   DOI   ScienceOn
2 Naoshi Saito, Yoshio Ogawa, Yuko Saso, Chihong Liao, Ryuta Sakei, 'Flame-Extinguishing Concentrations and Peak Concentrations of $N_2$, Ar, $CO_2$ and their Mixtures for Hydrocarbon Fuels', Fire Safety Journal, Vol. 27, pp. 185-200, 1996   DOI   ScienceOn
3 J.A. Senecal, 'Flame Extinguishing in the Cup-burner by Inert Gases', Fire Safety Journal, Vol. 40, pp. 579-591,2005   DOI   ScienceOn
4 E.J. Lee, K.C. Oh, H.D. Shin, 'Soot Formation in Inverse Diffusion Flames of Diluted Ethene', Fuel, Vol. 84, pp. 543-550, 2005   DOI   ScienceOn
5 V. R. Katta, F. Takahashi, G. T. Linteris, 'Suppression of Cup-burner Flames using Carbon Dioxide in Microgravity', Combustion and Flame, Vol. 137, pp. 506-522, 2004   DOI   ScienceOn
6 Grosshandler, W. L., Gann, R. G. & Pitts, W. M., eds, 'Evaluation of Alternative In-flight Fire Suppressants for Full-scale Testing in Simulated Aircraft Engine Nacelles and Dry Bays', NIST SP 861, National Institute for Standards and Technology, Gaithersburg, MD,1994
7 G. P. Smith, D. M. Golden, M. Frenklach, N. W. Moriaty, B. Eiteneer, M. Goldenberg, C. T. Bowman, R. K. Hanson, S. Song, W. C. Gardiner Jr., V. V. Lissiansky, Z. Qin, 'GRI-Mech 3.0', http://www.me.berke1ey.edu/gri_ mech/
8 NFPA 2001, 'Standard on Clean Agent Fire Extinguishing System', 1996
9 R. J. Kee, F. M. Rupley, J. A. Miller, M. E. Coltrin, J. F. Grear, E. Meeks, H. K. Moffat, A. E. Lutz, G. Dixon-Lewis, M. D. Smooke, J. Warnatz, G. H. Evans, R. S. Larson, R. E. Mitchell, L. R. Petzold, W. C. Reynolds, M. Caracotsios, W. E. Stewart, P. Glarborg, C. Wang, O. Adigum, The Chemkin Thermodynamic Databass, CHEMKIN Collection, Release 3.0, Reaction Design, Inc., San Diego, CA, 1997
10 'The SFPE Handbook of Fire Protection Engineering', 3rd ed, NFPA, 2002