Browse > Article
http://dx.doi.org/10.11003/JPNT.2022.11.3.157

Ionospheric TEC Disturbances Triggered by the 2022 Nuri Rocket Launch  

Choi, Byung-Kyu (Space Science Division, Korea Astronomy and Space Science Institute)
Sohn, Dong-Hyo (Space Science Division, Korea Astronomy and Space Science Institute)
Publication Information
Journal of Positioning, Navigation, and Timing / v.11, no.3, 2022 , pp. 157-161 More about this Journal
Abstract
The Nuri rocket developed by South Korea was launched at approximately 07:00 UT on June 21, 2022. We use GPS observations obtained from the Korean GNSS network to analyze ionospheric total electron content (TEC) disturbances induced by the 2022 Nuri rocket launch. TEC disturbances are observed south over South Korea 4-5 min after the rocket launch. In addition, the maximum depletion in the vertical TEC shows approximately 8 TEC units (TECU). We also compute a horizontal velocity from initial ionospheric disturbances triggered by the 2022 Nuri rocket launch. Its velocity is about 1.4 km/s. It may be related to the rocket's flight trajectory at the observation time of the ionospheric TEC disturbance.
Keywords
Nuri rocket; GNSS; ionosphere; TEC;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Choi, B. K. & Kil, H. 2017, Large ionospheric TEC depletion induced by the 2016 North Korea rocket, ASR, 59, 532-541. https://doi.org/10.1016/j.asr.2016.09.012   DOI
2 Jakowski, N., Schluter, S., & Sardon, E. 1999, Total electron content of the ionosphere during the geomagnetic storm on 10 January 1997, J. Atmos. Sol. Terr. Phys., 61, 299-307. https://doi.org/10.1016/S1364-6826(98)00130-8   DOI
3 Mannucci, A. J., Tsurutani, B. T., Iijima, B. A., Komjathy, A., Saito, A., et al. 2005, Dayside global ionospheric response to the major interplanetary events of October 29-30, 2003 ''Halloween Storms", Geophys. Res. Lett. 32, L12S02. https://doi.org/10.1029/2004GL021467   DOI
4 Meza, A. 1999, Three dimensional ionospheric models from earth and space based GPS observations, Ph.D. thesis, Universidad Nacional de La Plata.
5 Ozeki, M. & Heki, K. 2010, Ionospheric holes made by ballistic missiles from North Korea detected with a Japanese dense GPS array, J. Geophys. Res. 115, A09314. https://doi.org/10.1029/2010JA015531   DOI
6 Chen, C. H., Saito, A., Lin, C. H., Liu, J. Y., Tsai, H. F. et al. 2011, Long-distance propagation of ionospheric disturbance generated by the 2011 off the Pacific coast of Tohoku Earthquake, EPS, 63, 881-884. https://doi.org/10.5047/eps.2011.06.026   DOI
7 Fedrizzi, M., de Paula, E. R., Langley, R. B., Komjathy, A., Batista, I. S., et al. 2005, Study of the March 31, 2001 magnetic storm effects on the ionospheric using GPS data, ASR, 36, 534-545. https://doi.org/10.1016/j.asr.2005.07.019   DOI
8 Cai, C., Liu, Z., Xia, P, & Dai, W. 2013, Cycle slip detection and repair for undifferenced GPS observations under high ionospheric activity, GPS Solut., 17, 247-260. https://doi.org/10.1007/s10291-012-0275-7   DOI
9 Choi, B. K. & Hong, J. S. 2019, Observation of the fast-traveling ionospheric disturbances induced by the 2017 North Korean missile, ASR, 63, 2598-2608. https://doi.org/10.1016/j.asr.2018.12.033   DOI
10 Chou, M. Y., Shen, M. H., Lin, C. C. H., Yue, J., Chen, C. H., et al. 2018, Gigantic circular shock acoustic waves in the ionosphere triggered by the launch of FORMOSAT-5 satellite, Space Weather, 16, 172-184. https://doi.org/10.1002/2017SW001738   DOI
11 Shao, X. -M., Lay, E. H., & Jacobson, A. R. 2013, Reduction of electron density in the night-time lower ionosphere in response to a thunderstorm, Nat. Geosci., 6, 29-33. https://doi.org/10.1038/ngeo1668   DOI
12 Kakinami, Y., Yamamoto, M., Chen, C.-H., Watanabe, S., Lin, C., et al. 2013, Ionospheric disturbances induced by a missile launched from North Korea on 12 December 2012, J. Geophys. Res. Space Phys., 118, 5184-5189. https://doi.org/10.1002/jgra.50508   DOI
13 Lin, C. H., Chen, C. -H., Matsumura, M., Lin, J. -T., & Kakinami, Y. 2017, Observation and simulation of the ionosphere disturbance waves triggered by rocket exhausts, J. Geophys. Res. Space Phys., 122, 8868-8882. https://doi.org/10.1002/2017JA023951   DOI
14 Mannucci, A. J., Wilson, B. D., Yuan, D. N., Ho, C. H., Lindqwister, U. J., et al. 1998, A global mapping technique for GPS-derived ionospheric total electron content measurements, Radio Sci., 33, 565-582. https://doi.org/10.1029/97RS02707   DOI
15 Otsuka, Y., Ogawa, T., Saito, A., Tsugawa, T., Fukao, S., et al. 2002, A new technique for mapping of total electron content using GPS network in Japan, EPS, 54, 63-70. https://doi.org/10.1186/BF03352422   DOI
16 Polyakova, A. S. & Perevalova, N. P. 2011, Investigation into impact of tropical cyclones on the ionosphere using GPS sounding and NCEP/NCAR reanalysis data, ASR, 48, 1196-1210. https://doi.org/10.1016/j.asr.2011.06.014   DOI