Browse > Article

A Numerical Study on Flow Control Structure of a New-Type Submerged Breakwater  

Hur, Dong-Soo (Institute of marine industry, Department of Ocean Civil Engineering, Gyeongsang National University)
Lee, Woo-Dong (Department of Civil Engineering, Nagoya University)
An, Sung-Wook (POSCO Engineering & Construction Co., Ltd.)
Park, Jong-Bae (POSCO Engineering & Construction Co., Ltd.)
Publication Information
Journal of Korean Society of Coastal and Ocean Engineers / v.22, no.3, 2010 , pp. 181-190 More about this Journal
Abstract
In case of constructing submerged breakwaters, the circulation current is occurred around the open inlet because of mean water level difference between front and rear sides of them. The aim of this study is to investigate the flow control structure of new-type submerged breakwater which is able to reduce mean water level at rear side of it. At first, the numerical model (LES-WASS-3D) is validated by comparing with existing experimental data. And then, numerical simulation is carried out to examine wave height, mean water level and mean flow around the newtype submerged breakwater. From the numerical results, it can be pointed out that the new-type submerged breakwater with drainage system reduces the rip current around the open inlet.
Keywords
New-type submerged breakwater; mean water level; rip current; circulation current; LES-WASS-3D;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Kramer, M., Zanuttigh, B., van der Meer, J.W., Vidal, C. and Gironella, F.X. (2005). Laboratory experiments on low-crested breakwaters. Coastal. Eng., 52, 867-885.   DOI   ScienceOn
2 Osanai, K. and Minami, M. (2003). Experimental study on vertical velocity distribution around the opening of artificial reefs. Journal of Civil Engineering in the Ocean, JSCE, 19, 213-218 (in Japanese).   DOI
3 Smagorinsky, J. (1963). General circulation experiments with the primitive equation, Mon. Weath. Rev. 91(3), 99-164.   DOI
4 Sakakiysma, T. and Kajima, R. (1992). Numerical simulation of nonlinear wave interacting with permeable breakwater. Proc. 23rd Int. Conf. Coastal Eng., ASCE, 1517-1530.
5 van Gent, M.R.A. (1995). Wave interaction with permeable coastal structures, Ph.D. Thesis, Delft University The Netherlands.
6 Zanuttigh, B. (2007). Numerical modelling of the morphological response induced by low-crested structures in Lido di Dante, Italy. Coastal Eng., Vol. 54, pp. 31-47.   DOI   ScienceOn
7 Zysermana, J.A., Johnsona, H.K., Zanuttigh, B. and Martinelli, L. (2005). Analysis of far-field erosion induced by low-crested rubble-mound structures. Coastal Eng., Vol. 52, pp. 977-994.   DOI   ScienceOn
8 Garcia, N., Lara J.L. and Losada, I.J. (2004). 2-D numerical analysis of near-field flow at low-crested permeable breakwater, Coastal Eng., 51, 991-1020.   DOI   ScienceOn
9 Hur, D.S. (2004). Deformation of multi-directional random waves passing over an impermeable submerged breakwater installed on a sloping bed. Ocean Eng., 31, 1295-1311.   DOI   ScienceOn
10 Hsu, T.W., Hsieh, C.M. and Hwang, R.R. (2004). Using RANS to simulate vortex generation and dissipation around impermeable submerged double breakwaters. Coastal Eng., 51, 557-579.   DOI   ScienceOn
11 Johnson, H. K., Karambas, T. V., Avgeris, I., Zanuttigh, B., Gonzalez-Maroco, D. and Caceres, I. (2005). Modelling of waves and currents around submerged breakwaters. Coastal Eng., 52, 949-969.   DOI   ScienceOn
12 Johnson, H.K. (2006). Wave modelling in the vicinity of submerged breakwaters. Coastal Eng., 53, 39-48.   DOI   ScienceOn
13 Liu, S. and Masliyah, J.H. (1999). Non-linear flows in porous media. J. Non-Newtonian Fluid Mech., 86(1), 229-252.   DOI   ScienceOn
14 Losada, I.J., Losada, M.A. and Martin, F.L. (1997). Harmonic generation past a submerged porous step, Coastal Eng., 31, 281-304.   DOI   ScienceOn
15 Ma, H.H., Mizutani, N., Eguchi, S. and Hur, D.S. (2004). Study on beach profile change and wave induced velocity field in permeable beach. Journal of Civil Engineering in the Ocean, JSCE, Vol. 20, pp. 509-514 (in Japanese).   DOI
16 Martinelli, L., Zanuttigh, B. and Lamberti, A. (2006). Hydrodynamic and morphodynamic response of isolated and multiple low crested structures: Experiments and simulations. Coastal Eng., Vol. 53, pp. 363-379.   DOI   ScienceOn
17 허동수, 이우동 (2007). 잠제 주변의 파고분포 및 흐름의 3차원 특성; PART I-해빈이 없을 경우. 대한토목학회논문집, 27(6B), 689-701.
18 이우동, 허동수, 박종배, 안성욱 (2009). 해빈경사에 따른 잠제개구부의 3차원적인 흐름특성에 관한 연구. 한국해양공학회지, 23(1), 7-15.   과학기술학회마을
19 허동수, 김도삼 (2003). 경사수역에 설치된 잠제 주변의 유속장과 와의 발생에 대한 수치모의. 한국해안.해양공학회지, 15(3), 151-158.   과학기술학회마을
20 허동수, 이우동, 염경선 (2009). 잠제 설치 연안역의 파동장에 미치는 해안곡률의 영향. 대한토목학회논문집, 29(5B), 463-472.
21 허동수, 이우동 (2008a). 잠제 주변의 파고분포 및 흐름의 3차원 특성; PART II-해빈이 있을 경우. 대한토목학회논문집, 28(1B), 115-123.
22 허동수, 이우동 (2008b). 잠제 설치 연안의 처오름 높이 특성; PART I-잠제의 평면배치에 의한 영향. 대한토목학회논문집, 28(3B), 345-354.
23 허동수, 이우동 (2008c). 잠제 설치 연안의 처오름 높이 특성; PART II-잠제의 제원에 의한 영향. 대한토목학회논문집, 28(4B), 429-439.
24 허동수, 이우동, 배기성 (2008). 사각격자체계 수치모델에서의 경사면 처리기법에 관하여. 대한토목학회논문집, 28(5B), 591-594.
25 허동수, 최동석 (2008). 투과성잠제의 비탈면경사가 주변 파동장에 미치는 영향. 대한토목학회논문집, 28(2B), 249-259.
26 Ergun, S. (1952). Fluid flow through packed columns. Chem Eng., 48(2), 89-94.