Browse > Article
http://dx.doi.org/10.13048/jkm.15030

Orostachys japonicus DW and EtOH Extracts Induce Apoptosis in Cholangiocarcinoma Cell Line SNU-1079  

Choi, Eun Sol (Department of Clinical Korean Medicine, Graduate School, Kyung Hee University)
Lee, Jang Hoon (Department of Clinical Korean Medicine, Graduate School, Kyung Hee University)
Publication Information
The Journal of Korean Medicine / v.36, no.4, 2015 , pp. 19-34 More about this Journal
Abstract
Objectives: This study was performed to investigate the anti-tumor effect of O. japonicus extracts on intrahepatic cholangiocarcinoma cell line SNU-1079. Methods: Cholangiocarcinoma SNU-1079 cells were treated with various concentrations of O. japonicus DW and EtOH extracts ($0-300{\mu}g/ml$) for 24, 48 or 72 h. Cell viability was evaluated through a PMS/MTS assay, and the apoptosis rate was examined through ELISA assay and flow cytometry analysis. The mRNA expression of apoptosis- and cell cycle progression-related genes (Bcl-2, Mcl-1, Bax, Survivin, Cyclin D1, and p21) was evaluated using real-time PCR, and the caspase activity was examined using immunoblot analysis. Results: O. japonicus extracts inhibited cell proliferation and increased apoptosis rate in both ELISA assay and flow cytometry analysis. O. japonicus extracts decreased Bcl-2, Mcl-1, Survivin, and Cyclin D1 mRNA expression and increased Bax mRNA level. O. japonicus extracts also increased Caspase-3 activation. Overall, O. japonicus DW extracts were more effective than EtOH extracts. Conclusions: O. japonicus inhibited cell proliferation and induced apoptosis in SNU-1079 cells via mitochondria -mediated intrinsic pathway, which leads to Caspase-3 activation. The results indicate that O. japonicus is a potential therapeutic herb with anti-tumor effect against intrahepatic cholangiocarcinoma.
Keywords
Orostachys japonicus; Intrahepatic cholangiocarcinoma; SNU-1079; Apoptosis; Anti-tumor effect; Caspase-3;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Rizvi S, Gores GJ. Pathogenesis, diagnosis, and management of cholangiocarcinoma. Gastroenterology. 2013;145:1215-29.   DOI
2 Shaib Y, El-Serag H.B. The epidemiology of cholangiocarcinoma. Seminars in liver disease 2004(24)115-25.
3 Welzel TM, McGlynn KA, Hsing AW, O'Brien TR., Pfeiffer RM. Impact of classification of hilar cholangiocarcinomas (Klatskin tumors) on the incidence of intra- and extrahepatic cholangiocarcinoma in the United States. Journal of the National Cancer Institute. 2006;98:873-5.   DOI
4 Fava G, Lorenzini I. Molecular pathogenesis of cholangiocarcinoma. Int J Hepatol. 2012;2012:1-7.
5 Lazaridis KN, Gores GJ. Cholangiocarcinoma. Gastroenterology. 2005;128:1655-67.   DOI
6 Sripa B, Pairojkul C. Cholangiocarcinoma: lessons from Thailand. Current opinion in gastroenterology. 2008;24:349-56.   DOI
7 Khan SA, Taylor-Robinson SD, Toledano M.B, Beck A, Elliott P, Thomas HC. Changing international trends in mortality rates for liver, biliary and pancreatic tumours. Journal of hepatology. 2002;37:806-13.   DOI
8 Khan SA., Toledano MB, Taylor-Robinson SD. Epidemiology, risk factors, and pathogenesis of cholangiocarcinoma. HPB : the official journal of the International Hepato Pancreato Biliary Association. 2008;10:77-82.   DOI
9 McGlynn KA, Tarone RE, El-Serag HB. A comparison of trends in the incidence of hepatocellular carcinoma and intrahepatic cholangiocarcinoma in the United States. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. 2006;15:1198-203.   DOI
10 Patel, T. Increasing incidence and mortality of primary intrahepatic cholangiocarcinoma in the United States. Hepatology. 2001;33:1353-7.   DOI
11 Fava G, Marzioni M, Benedetti A, Glaser S, DeMorrow S, Francis H, et al. Molecular pathology of biliary tract cancers. Cancer letters. 2007;250:155-67.   DOI
12 Sandhu DS, Shire AM, Roberts LR. Epigenetic DNA hypermethylation in cholangiocarcinoma: potential roles in pathogenesis, diagnosis and identification of treatment targets. Liver international : official journal of the International Association for the Study of the Liver. 2008;28:12-27.
13 Danial NN, Korsmeyer SJ. Cell death: critical control points. Cell. 2004;116:205-19.   DOI
14 Tischoff I, Wittekind C, Tannapfel A. Role of epigenetic alterations in cholangiocarcinoma. Journal of hepato-biliary-pancreatic surgery. 2006;13:274-9.   DOI
15 Lowe SW, Lin AW. Apoptosis in cancer. Carcinogenesis. 2000;21:485-95.   DOI
16 Thompson CB, Apoptosis in the pathogenesis and treatment of disease. Science. 1995;267:1456-62.   DOI
17 Taylor RC, Cullen SP, Martin SJ. Apoptosis: controlled demolition at the cellular level. Nature reviews. Molecular cell biology. 2008;9: 231-41.
18 Tsuruo T, Naito M, Tomida A, Fujita, N, Mashima T, Sakamoto H, et al. Molecular targeting therapy of cancer: drug resistance, apoptosis and survival signal. Cancer science. 2003;94:15-21.   DOI
19 Debatin KM, Apoptosis pathways in cancer and cancer therapy. Cancer immunology, immunotherapy:CII. 2004;53:153-9.   DOI
20 Lee HS, Ryu DS, Lee GS, Lee DS. Anti-inflammatory effects of dichloromethane fraction from Orostachys japonicus in RAW 264.7 cells: suppression of NF-kappaB activation and MAPK signaling. Journal of ethnopharmacology. 2012;140:271-6.   DOI
21 Yoon Y, Kim KS, Hong SG, Kang BJ, Lee M Y, Cho DW. Protective effects of Orostachys japonicus A. Berger (Crassulaceae) on H2O2-induced apoptosis in GT1-1 mouse hypothalamic neuronal cell line. Journal of ethnopharmacology. 2000;69:73-8.   DOI
22 Ryu DS, Kim SH, Kwon JH, Lee DS. Orostachys japonicus induces apoptosis and cell cycle arrest through the mitochondria -dependent apoptotic pathway in AGS human gastric cancer cells. International journal of oncology. 2014;45:459-69.   DOI
23 Jung HJ, Choi J, Nam JH, Park HJ. Anti-ulcerogenic effects of the flavonoid-rich fraction from the extract of Orostachys japonicus in mice. Journal of medicinal food. 2007;10:702-6.   DOI
24 Park JC, Han WD, Park JR, Choi SH, Choi J W. Changes in hepatic drug metabolizing enzymes and lipid peroxidation by methanol extract and major compound of Orostachys japonicus. Journal of ethnopharmacology. 2005;102:313-8.   DOI
25 Shin DY, Lee WS, Jung JH, Hong SH, Park C, Kim HJ, et al. Flavonoids from Orostachys japonicus A. Berger inhibit the invasion of LnCaP prostate carcinoma cells by inactivating Akt and modulating tight junctions. International journal of molecular sciences. 2013;14:18407-20.   DOI
26 Lee WS, Yun JW, Nagappan A, Jung JH, Yi SM, Kim DH et al. Flavonoids from Orostachys japonicus A. Berger induces caspase-dependent apoptosis at least partly through activation of p38 MAPK pathway in U937 human leukemic cells. Asian Pacific journal of cancer prevention : APJCP. 2015; 16:465-9.   DOI
27 Kim YI, Park SW, Choi IH, Lee JH, Woo HJ, Kim, Y. Effect of Orostachys japonicus on cell growth and apoptosis in human hepatic stellate cell line LX2. The American journal of Chinese medicine. 2011;39:601-13.   DOI
28 Yun KS, Lee JH, Woo Hj. Effect of Orostachys japonicus A. berger in Apoptosis in K562 Cell Lines. Korean J. Orient. Int. Med. 2006;27:166-177.
29 Kim JY, Won YS, Lee JH, Shin DY, Seo KI. Cultivated Orostachys japonicus Induces Apoptosis in Human Colon Cancer Cells. KOREAN J. FOOD SCI. TECHNOL. 2012;44:317-323.   DOI
30 Oh CH, Kim NS, Jeon HJ, Han KS, Lee MJ Lee, Kwon J. Effect of Orostachys japonicus A. Berger on Apoptosis Induction of Human Leukemia HL60 Cells. Kor. J. Pharmacogn. 2009;40:118-122.
31 Won YS, Kwon SJ, Ahn DU, Shin DY, Seo KI. Anticancer Effects of Cultivated Orostachys japonicus on Human Prostate Cancer Cells. J Korean Soc Food Sci Nutr. 2014;43:67-73.   DOI
32 Ku JL, Yoon KA, Kim IJ, Kim WH, Jang JY, Suh KS, et al. Establishment and characterisation of six human biliary tract cancer cell lines. British journal of cancer. 2002;87:187-93.   DOI
33 Joung B, Kim Y. Study on Anti-Cancer Effects of Rhus Verniciflua Stokes Extracted with Sterile Distilled Water on Two Cholangiocarcinoma Cell Lines, SNU-1079 and SNU-1196. J. Int. Korean Med. 2015;36:1-12.
34 Park JK. Pro-apoptotic Effects of Sanguisorbae Radix Ethanol-Extracts on Two Cholangiocarcinoma Cell Lines, SNU-1079 and SNU-1196. Korean J. Orient. Int. Med. 2012;33:465-475.
35 Khan SA, Davidson BR, Goldin RD, Heaton N, Karani J, Pereira SP. Guidelines for the diagnosis and treatment of cholangiocarcinoma: an update. Gut. 2012;61:1657-69.   DOI
36 Tyson GL, El-Serag HB, Risk factors for cholangiocarcinoma. Hepatology. 2011;54:173-84.
37 Shaib YH, Davila JA., McGlynn K, El-Serag HB. Rising incidence of intrahepatic cholangiocarcinoma in the United States: a true increase? Journal of hepatology. 2004;40:472-7.   DOI
38 Taniai M, Grambihler A, Higuchi H, Werneburg N, Bronk SF, Farrugia DJ. et al. Mcl-1 mediates tumor necrosis factor-related apoptosis-inducing ligand resistance in human cholangiocarcinoma cells. Cancer research. 2004;64:3517-24.   DOI
39 Alpini G, McGill JM, Larusso NF. The pathobiology of biliary epithelia. Hepatology. 2002;35:1256-68.   DOI
40 Harnois DM, Que FG, Celli A, LaRusso NF, Gores GJ. Bcl-2 is overexpressed and alters the threshold for apoptosis in a cholangiocarcinoma cell line. Hepatology. 1997;26:884-90.   DOI
41 Rizvi S, Gores GJ. Molecular pathogenesis of cholangiocarcinoma. Digestive diseases. 2014;32:564-9.   DOI
42 Kobayashi S, Werneburg NW, Bronk SF, Kaufmann SH, Gores GJ. Interleukin-6 contributes to Mcl-1 up-regulation and TRAIL resistance via an Akt-signaling pathway in cholangiocarcinoma cells. Gastroenterology. 2005;128:2054-65.   DOI
43 Shi Y, Chen J, Weng C, Chen R, Zheng Y, Chen Q, et al. Identification of the protein-protein contact site and interaction mode of human VDAC1 with Bcl-2 family proteins. Biochemical and biophysical research communications. 2003;305:989-96.   DOI
44 Kroemer G, Galluzzi L, Brenner C. Mitochondrial membrane permeabilization in cell death. Physiological reviews. 2007;87: 99-163.   DOI
45 Sah NK, Khan Z, Khan GJ, Bisen PS. Structural, functional and therapeutic biology of survivin. Cancer letters. 2006;244:164-71.   DOI
46 Baldin V, Lukas J, Marcote MJ, Pagano M, Draetta G. Cyclin D1 is a nuclear protein required for cell cycle progression in G1. Genes & development. 1993;7:812-21.   DOI
47 Ghavami S, Hashemi M, Ande SR, Yeganeh B, Xiao W, Eshraghi M, et al. Apoptosis and cancer: mutations within caspase genes. Journal of medical genetics. 2009;46:497-510.   DOI
48 Diehl JA. Cycling to cancer with cyclin D1. Cancer biology & therapy. 2002;1:226-31.   DOI
49 Shintani M, Okazaki A, Masuda T, Kawada M, Ishizuka M, Doki Y, et al. Overexpression of cyclin DI contributes to malignant properties of esophageal tumor cells by increasing VEGF production and decreasing Fas expression. Anticancer research. 2002;22:639-47.
50 Gartel AL, Radhakrishnan SK. Lost in transcription: p21 repression, mechanisms, and consequences. Cancer research. 2005;65:3980-5.   DOI
51 Porter AG, Janicke RU. Emerging roles of caspase-3 in apoptosis. Cell death and differentiation. 1999;6:99-104.   DOI