Browse > Article
http://dx.doi.org/10.26748/KSOE.2022.013

Proposal of Parameter Range that Offered Optimal Performance in the Coastal Morphodynamic Model (XBeach) Through GLUE  

Bae, Hyunwoo (Department of Convergence study on the Ocean Science and Technology, Korea Maritime and Ocean University)
Do, Kideok (Department of Ocean Engineering, Korea Maritime and Ocean University)
Kim, Inho (Department of Earth and Environmental Engineering, Kangwon National University)
Chang, Sungyeol (Haeyeon Engineering and Consultants Corporation)
Publication Information
Journal of Ocean Engineering and Technology / v.36, no.4, 2022 , pp. 251-269 More about this Journal
Abstract
The process-based XBeach model has numerous empirical parameters because of insufficient understanding of hydrodynamics and sediment transport on the nearshore; hence, it is necessary to calibrate parameters to apply to various study areas and wave conditions. Therefore, the calibration process of parameters is essential for the improvement of model performance. Generally, the trial-and-error method is widely used; however, this method is passive and limited to various and comprehensive parameter ranges. In this study, the Generalized Likelihood Uncertainty Estimation (GLUE) method was used to estimate the optimal range of three parameters (gamma, facua, and gamma2) using morphological field data collected in Maengbang beach during the four typhoons that struck from September to October 2019. The model performance and optimal range of empirical parameters were evaluated using Brier Skill Score (BSS) along with the baseline profiles, sensitivity, and likelihood density analysis of BSS in the GLUE tools. Accordingly, the optimal parameter combinations were derived when facua was less than 0.15 and simulated well the shifting shape, from crescentic sand bar to alongshore uniform sand bars in the surf zone of Maengbang beach after storm impact. However, the erosion and accretion patterns nearby in the surf zone and shoreline remain challenges in the XBeach model.
Keywords
XBeach; GLUE; Maengbang beach; Quantization; Uncertainty; Objective calibration;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Beven, K., & Binley, A. (1992). The Future of Distributed Models: Model Calibration and Uncertainty Prediction. Hydrological Processes, 6(3), 279-298. http://dx.doi.org/10.1002/hyp.3360060305   DOI
2 Bolle, A., Mercelis, P., Roelvink, D., Haerens, P., & Trouw, K. (2010). Application and Validation of XBeach for Three Different Field Sites. Coastal Engineering Proceedings, 32, 40-40. https://doi.org/10.9753/icce.v32.sediment.40   DOI
3 Cueto, J., & Otero, L. (2020). Morphodynamic Response to Extreme Wave Events of Microtidal Dissipative and Reflective Beaches. Applied Ocean Research, 101, 102283. https://doi.org/10.1016/j.apor.2020.102283   DOI
4 De Vet, P.L.M. (2014). Modelling Dediment Transport and Morphology During Overwash and Breaching Events (Master's thesis). Delft University of Technology.
5 Jin, H., Do, K., Shin, S., & Cox, D. (2021). Process-Based Model Prediction of Coastal Dune Erosion through Parametric Calibration. Journal of Marine Science and Engineering, 9(6), 635. https://doi.org/https://doi.org/10.3390/jmse9060635   DOI
6 Kalligeris, N., Smit, P.B., Ludka, B.C., Guza, R.T., & Gallien, T.W. (2020). Calibration and Assessment of Process-based Numerical Models for Beach Profile Evolution in Southern California. Coastal Engineering, 158, 103650. https://doi.org/10.1016/j.coastaleng.2020.103650   DOI
7 Kombiadou, K., Costas, S., & Roelvink, D. (2021). Simulating Destructive and Constructive Morphodynamic Processes in Steep Beaches. Journal of Marine Science and Engineering, 9(1), 86. https://doi.org/10.3390/jmse9010086   DOI
8 Lindemer, C.A., Plant, N.G., Puleo, J.A., Thompson, D.M., & Wamsley, T.V. (2010). Numerical Simulation of a Low-lying Barrier Island's Morphological Response to Hurricane Katrina. Coastal Engineering, 57(11-12), 985-995. https://doi.org/10.1016/j.coastaleng.2010.06.004   DOI
9 Soulsby, R.L. (1997). Dynamics of Marine Sands. Thomas Telford Publications.
10 Simmons, J.A., Harley, M.D., Marshall, L.A., Turner, I.L., Splinter, K.D., & Cox, R.J. (2017). Calibrating and Assessing Uncertainty in Coastal Numerical Models. Coastal Engineering, 125, 28-41. https://doi.org/10.1016/j.coastaleng.2017.04.005   DOI
11 Thorndahl, S., Beven, K.J., Jensen, J.B., & Schaarup-Jensen, K. (2008). Event Based Uncertainty Assessment in Urban Drainage Modelling, Applying the GLUE Methodology. Journal of Hydrology, 357(3-4), 421-437. https://doi.org/10.1016/j.jhydrol.2008.05.027   DOI
12 Vousdoukas, M.I., Ferreira, O., Almeida, L.P., & Pacheco, A. (2012). Toward Reliable Storm-hazard Rorecasts: XBeach Calibration and Its Potential Application in an Operational Early-warning System. Ocean Dynamics, 62(7), 1001-1015. https://doi.org/10.1007/s10236-012-0544-6   DOI
13 Baquerizo, A., & Losada, M. A. (2008). Human Interaction with Large Scale Coastal Morphological Evolution. An assessment of the uncertainty. Coastal Engineering, 55(7-8), 569-580. https://doi.org/10.1016/j.coastaleng.2007.10.004   DOI
14 McCall, R.T., Van Thiel de Vries, J.S.M., Plant, N.G., Van Dongeren, A.R., Roelvink, J.A., Thompson, D.M., & Reniers, A.J.H.M. (2010). Two-Dimensional Time Dependent Hurricane Overwash and Erosion Modeling at Santa Rosa Island. Coastal Engineering, 57(7), 668-683. https://doi.org/10.1016/j.coastaleng.2010.02.006   DOI
15 Nederhoff, C.M., Lodder, Q.J., Boers, M., Den Bieman, J.P., & Miller, J.K. (2015). Modeling the Effects of Hard Structures on Dune Erosion and Overwash: A Case Study of the Impact of Hurricane Sandy on the New Jersey Coast. Proceedings of Coastal Sediments, San Diego, CA. https://doi.org/10.1142/9789814689977_021   DOI
16 Roelvink, J.A. (1993). Dissipation in Random Wave Groups Incident on a Beach. Coastal Engineering, 19(1-2), 127-150. https://doi.org/10.1016/0378-3839(93)90021-Y   DOI
17 Orzech, M.D., Reniers, A.J.H.M., Thornton, E.B., & MacMahan, J.H. (2011). Megacusps on Rip Channel Bathymetry: Observations and Modeling. Coastal Engineering, 58(9), 890-907. https://doi.org/10.1016/j.coastaleng.2011.05.001   DOI
18 Pender, D., & Karunarathna, H. (2013). A Statistical-process Based Approach for Modelling Beach Profile Variability. Coastal Engineering, 81, 19-29. https://doi.org/10.1016/j.coastaleng.2013.06.006   DOI
19 Roelvink, D., Reniers, A., van Dongeren, A., van Thiel de Vries, J., McCall, R., & Lescinski, J. (2009). Modelling Storm Impacts on Beaches, Dunes and Barrier Islands. Coastal Engineering, 56(11-12), 1133-1152. https://doi.org/10.1016/j.coastaleng.2009.08.006   DOI
20 Ruessink, B.G. (2006). Parameter-Induced Predictive Uncertainty in Process-based Modeling: Application of Markov Chain Monte Carlo. Proceedings of Fifth International Coastal Dynamics 2005, Barcelona, Spain, 1-13. https://doi.org/10.1061/40855(214)44   DOI
21 Sallenger, A.H. (2000). Storm Impact Scale for Barrier Islands. Journal of Coastal Research, 16(3), 890-895. https://www.jstor.org/stable/4300099
22 Splinter, K.D., & Palmsten, M.L. (2012). Modeling Dune Response to an East Coast Low. Marine Geology, 329-331, 46-57. https://doi.org/10.1016/j.margeo.2012.09.005   DOI
23 van Rijn, L.C., (2007b). Unified View of Sediment Transport by Currents and Waves. II: Suspended Transport. Journal of Hydraulic Engineering, 133(6), 668-689. https://doi.org/10.1061/(ASCE)0733-9429(2007)133:6(668)   DOI
24 Beven, K. (2006). A Manifesto for the Equifinality Thesis. Journal of Hydrology, 320(1-2), 18-36. https://doi.org/10.1016/j.jhydrol.2005.07.007   DOI
25 Do, K., Shin, S., Cox, D., & Yoo, J. (2018). Numerical Simulation and Large-Scale Physical Modelling of Coastal Sand Dune Erosion. Journal of Coastal Research, 85(sp1), 196-200. https://doi.org/10.2112/SI85-040.1   DOI
26 Elsayed, S.M., & Oumeraci, H. (2017). Effect of Beach Slope and Grain-stabilization on Coastal Sediment Transport: An Attempt to Overcome the Erosion Overestimation by XBeach. Coastal Engineering, 121(January), 179-196. https://doi.org/10.1016/j.coastaleng.2016.12.009   DOI
27 Hornberger, G.M., & Spear, R.C. (1981). An Approach to the Preliminary Analysis of Environmental Systems. Journal of Environmental Management, 12(1), 7-18.
28 Jin, H., Do, K., Chang, S., & Kim, I.H. (2020). Field Observation of Morphological Response to Storm Waves and Sensitivity Analysis of XBeach Model at Beach and Crescentic Bar. Journal of Korean Society of Coastal and Ocean Engineers, 32(6), 446-457. https://doi.org/10.9765/kscoe.2020.32.6.446   DOI
29 Simmons, J.A., Splinter, K.D., Harley, M.D., & Turner, I.L. (2019). Calibration Data Requirements for Modelling Subaerial Beach Storm Erosion. Coastal Engineering, 152, 103507. https://doi.org/10.1016/j.coastaleng.2019.103507   DOI
30 Talmon, M., Struiksma, N., & Mierlo, M. C. L. M. Van. (1995). Laboratory Measurements of the Direction of Sediment Transport on Transverse Alluvial-bed Slopes. Journal of Hydraulic Research, 33(4), 495-517. https://doi.org/10.1080/00221689509498657   DOI
31 van Rhee, C. (2010). Sediment Entrainment at High Flow Velocity. Journal of Hydraulic Engineering, 136(9), 572-582. https://doi.org/10.1061/(asce)hy.1943-7900.0000214   DOI
32 Do, K., & Yoo, J. (2020). Morphological Response to Storms in an Embayed Beach Having Limited Sediment Thickness. Estuarine, Coastal and Shelf Science, 234, 106636. https://doi.org/10.1016/j.ecss.2020.106636   DOI
33 Daly, C., Roelvink, D., van Dongeren, A., van Thiel de Vries, J., & McCall, R. (2012). Validation of an Advective-deterministic Approach to Short Wave Breaking in a Surf-beat Model. Coastal Engineering, 60, 69-83. https://doi.org/10.1016/j.coastaleng.2011.08.001   DOI
34 Deltares. (2018). XBeach Documentation_Relase XBeach v1.23.5527 XBeachX Final. Netherlands, Deltares.
35 van Rijn, L.C., (2007c). Unified View of Sediment Transport by Currents and Waves. III: Graded Beds. Journal of Hydraulic Engineering, 133(7), 761-775. https://doi.org/10.1061/(ASCE)0733-9429(2007)133:7(761)   DOI
36 Williams, J.J., de Alegria-Arzaburu, A.R., McCall, R.T., & Van Dongeren, A. (2012). Modelling Gravel Bbarrier Profile Response to Combined Waves and Tides using XBeach: Laboratory and Field Results. Coastal Engineering, 63, 62-80. https://doi.org/10.1016/j.coastaleng.2011.12.010   DOI
37 van Rijn, L.C., Wasltra, D.J.R., Grasmeijer, B., Sutherland, J., Pan, S., & Sierra, J.P. (2003). The Predictability of Cross-shore Bed Evolution of Sandy Beaches at the Time Scale of Storms and Seasons using Process-based Profile Models. Coastal Engineering, 47(3), 295-327. https://doi.org/10.1016/S0378-3839(02)00120-5   DOI
38 Galappatti, G, & Vreugdenhil, C.B. (1985). A Depth-integrated Model for Suspended Sediment Transport. Journal of Hydraulic Research, 23(4), 359-377. https://doi.org/10.1080/00221688509499345   DOI
39 van Rijn, L.C., (2007a). Unified View of Sediment Transport by Currents and Waves. I: Initiation of Motion, Bed Roughness, and Bed-Load Transport. Journal of Hydraulic Engineering, 133(6), 649-667. https://doi.org/10.1061/(asce)0733-9429(2007)133:6(649)   DOI
40 Harley, M.D., Valentini, A., Armaroli, C., Perini, L., Calabrese, L., & Ciavola, P. (2016). Can an Early-warning System Help Minimize the Impacts of Coastal Storms? A Case Study of the 2012 Halloween Storm, Northern Italy. Natural Hazards and Earth System Sciences, 16(1), 209-222. https://doi.org/10.5194/nhess-16-209-2016   DOI
41 Google. (2020). Google Earth, Retrieved from https://www.google.com/earth/about/versions/?glKR&hlko#download-pro
42 Bugajny, N., Furmanczyk, K., Dudzinska-Nowak, J., & Paplinska-Swerpel, B. (2013). Modelling Morphological Changes of Beach and Dune Induced by Storm on the Southern Baltic Coast using XBeach (Case Study: Dziwnow Spit). Journal of Coastal Research, 65(sp1), 672-677. https://doi.org/10.2112/si65-114.1   DOI
43 Cho, Y.J., & Kim, I.H. (2019). Preliminary Study on the Development of a Platform for the Selection of Optimal Beach Stabilization Measures against the Beach Erosion - Centering on the Yearly Sediment Budget of Mang-Bang Beach. Journal of Korean Society of Coastal and Ocean Engineers, 31(1), 28-39. https://doi.org/10.9765/kscoe.2019.31.1.28   DOI
44 Daly, C. (2017). Modelling Accretion At Nha Trang Beach. Coastal Dynamics, 170, 1886-1896.