Browse > Article
http://dx.doi.org/10.26748/KSOE.2019.100

A Study of the Optimal Deployment of Tsunami Observation Instruments in Korea  

Lee, Eunju (Marine Science and Convergence Engineering, Hanyang University)
Jung, Taehwa (Hanbat University)
Kim, Ji-Chang (Marine Science and Convergence Engineering, Hanyang University)
Shin, Sungwon (Marine Science and Convergence Engineering, Hanyang University)
Publication Information
Journal of Ocean Engineering and Technology / v.33, no.6, 2019 , pp. 607-614 More about this Journal
Abstract
It has been an issue among researchers that the tsunamis that occurred on the west coast of Japan in 1983 and 1993 damaged the coastal cities on the east coast of Korea. In order to predict and reduce the damage to the Korean Peninsula effectively, it is necessary to install offshore tsunami observation instruments as part of the system for the early detection of tsunamis. The purpose of this study is to recommend the optimal deployment of tsunami observation instruments in terms of the higher probability of tsunami detection with the minimum equipment and the maximum evacuation and warning time according to the current situation in Korea. In order to propose the optimal location of the tsunami observation equipment, this study will analyze the tsunami propagation phenomena on the east sea by considering the potential tsunami scenario on the west coast of Japan through numerical modeling using the COrnell Multi-grid COupled Tsunami (COMCOT) model. Based on the results of the numerical model, this study suggested the optimal deployment of Korea's offshore tsunami observation instruments on the northeast side of Ulleung Island.
Keywords
Tsunami; Early Detection System; Offshore observation Instruments; Optimal deployment; Tsunami propagation model;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Barnes, C.R., Best, M.M., Zielinski, A., 2008. The NEPTUNE Canada Regional Cabled Ocean Observatory. Technology (Crayford, England), 50.
2 Cho, Y.S., Lee, J.W., 2013. Hazard Map with Probable Maximum Tsunamis. Proceedings of the 23th International Offshore and Polar Engineering Conference, Alaska USA, 82-85.
3 Choi, B.H., Hong, S.J., Pelinovsky, E., 2001. Simulation of Prognostic Tsunami on the Korean Coast. Journal of Geophysical research Letters, 28(10), 2013-2016. https://doi.org/10.1029/2000GL012534   DOI
4 Cienfuegos, R., Catalan, P.A., Urrutia, A., Benavente, R., Aranguiz, R., Gonzalez, G., 2018. What Can We Do to Forecast Tsunami Hazards in the Near Field Given Large Epistemic Uncertainty in Rapid Seismic Source Inversions?. Geophysical Research Letters, 45, 4944-4955. https://doi.org/10.1029/2018GL076998,2018.   DOI
5 Gusman, A., Tanioka, Y., 2014. W Phase Inversion and Tsunami Inundation Modeling for Tsunami Early Warning: Case Study for the 2011 Tohoku Event. Pure and Applied Geophysics, 171, 1409-1422. 1409-1422. https://doi.org/10.1007/s00024-013-0680-z   DOI
6 Japan Society of Civil Engineers, 2016. Tsunami Assessment Technology for Nuclear Power Plants 2016. [Online] (Updated September 2016) Available at: [Accessed September 2019]
7 Jeon, Y.J., Lee, S.M., Lim, C.H., Yoon, S.B., 2007. Propagation Characteristics of 1983 Central East Sea Tsunami, Korean Society of Civil Engineers, 4572-4575.
8 Jho, M.H., Kim G.H., Yoon, S.B., 2019. Construction of Logic Trees and Hazard Curves for Probabilistic Tsunami Hazard Analysis. Journal of Korean Society of Coastal and Ocean Engineers, 31(2), 62-72. https://doi.org/10.9765/KSCOE.2019.31.2.62   DOI
9 Kaneda, Y., Kawaguchi, K., Araki, E., Matsumoto, H., Nakamura, T., Kamiya, S., Ariyoshi, K., Hori, T., Baba, T., Takahashi, N., 2015. Development and Application of an Advanced Ocean Floor Network System for Megathrust Earthquakes and Tsunamis. Springer Praxis Books, 643-662. https://doi.org/10.1007/978-3-642-11374-1_25
10 Kanazawa, T., 2013. Japan Trench Earthquake and Tsunami Monitoring Network of Cable-linked 150 Ocean Bottom Observatories and Its Impact to Earth Disaster Science. Journal of Underwater Technology Symposium (UT), 2013 IEEE International, 1-5. https://doi.org/10.1109/UT.2013.6519911
11 Kawai, H., Satoh, M., Kawaguchi, K., Seki, K., 2013. Characteristics of the 2011 Tohoku Tsunami Waveform Acquired around Japan by NOWPHAS Equipment. Coastal Engineering Journal, 55(03), 1350008. https://doi.org/10.1142/S0578563413500083
12 Kim, B.J., Cho, Y.S., 2014. Determination of Tsunami Height Distribution with L-moment Method.Journal of Korean Society of Hazard Mitigation, 14(1), 311-1317. https://doi.org/10.9798/KOSHAM.2014.14.1.311   DOI
13 Kim, H.S., 2008. Occurrence of Tsunami and Warning System. The Korean Society of Marine Engineering, 32(4), 490-497.
14 Kim, H.S., Kim, K.O., Jung, K.T., Lee, J.S., 2013. Development of Parallel Tsunami Programig Model(I). National Disaster Management Institute. Report No. NDMI-PR-2013-20-02.
15 Lee, J.H., Park, E.H., Park, S.C., Woo, S.B., 2015. Development of the Global Tsunami Prediction System Using the Finite Fault Model and the Cyclic Boundary Condition. Journal of Korean Society of Coastal and Ocean Engineers, 27(6), 391-405. https://doi.org/10.9765/KSCOE.2015.27.6.391   DOI
16 Okal, E.A., 2015. The Quest for Wisdom: Lessons from 17 Tsunamis, 2004-2014. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 373(2053). https://doi.org/10.1098/rsta.2014.0370
17 Mori, N., Goda, K., Cox, D., 2018. Recent Process in Probabilistic Tsunami Hazard Analysis (PTHA) for Mega Thrust Subduction Earthquakes. In the 2011 Japan Earthquake and Tsunami: Reconstruction and Restoration, 469-485. https://doi.org/10.1007/978-3-319-58691-5_27
18 Mueller C., Power W., Fraser S., Wang X., 2015. Effects of Rupture Complexity on Local Tsunami Inundation: Implications for Probabilistic Tsunami Hazard Assessment by Example, Journal of Geophysical Research: Solid Earth, 120(1), 488-502. https://doi.org/10.1002/2014JB011301   DOI
19 Mulia, I.E., Gusman, A.R., Satake, K., 2017. Optimal Design for Placements of Tsunami Observing Systems to Accurately Characterize the Inducing Earthquake. Journal of Geophysical Research Letters, 44(24), 106-12, 115. https://doi.org/10.1002/2017GL075791
20 National Oceanic and Atmospheric Administration (NOAA), n.d.. Deep-ocean Assessment and Reporting of Tsunamis. [Online] Available at: [Accessed December 2019].
21 Okinawa Prefecture Civil Engineering Department, 2015. Outsourced Setting of Okinawa Tsunami Inundation Assumptions. [Online] (Updated March 2015) Available at: [Accessed August 2019].
22 Omira, R., Baptista, M.A., Matias, L., Miranda, J.M., Catita, C., Carrilho, F., Toto, E., 2009. Design of a Sea-level Tsunami Detection Network for the Gulf of Cadiz. Natural Hazards and Earth System Sciences, 9(4), 1327-1338. https://doi.org/10.5194/nhess-9-1327-2009   DOI
23 Meza, J., Catalan, P.A., Tsushima, H., 2018. A Methodology For Optimal Designing Of Monitoring Sensor Networks For Tsunami Inversion. Natural Hazards and Earth System Sciences, Under Review, Discussion started: 22 October 2018.
24 Schindele, F., Loevenbruck, A., Hebert, H., 2008. Strategy to Design the Sea-level Monitoring Networks for Small Tsunamigenic Oceanic Basins: the Western Mediterranean Case. Natural Hazards and Earth System Sciences, 8(5), 1019-1027. https://doi.org/10.5194/nhess-8-1019-2008   DOI
25 Percival, D.B., Denbo, D.W., Eble, M.C., Gica, E., Mofjeld, H.O., Spillane, M.C., Tang, L., Titov, V.V., 2011. Extraction of Tsunami Source Coefficients via Inversion of DART(R)buoy Data. Journal of Nat. Hazards Earth Syst. Sci, 58(1), 567-590. https://doi.org/10.1007/s11069-010-9688-1
26 Pugh, D., Woodworth, P., 2014. Sea-Level Science: Understanding Tides, Surges, Tsunamis and Mean Sea-Level Changes. Cambridge University Press, Cambridge
27 Rehman, K., Cho, Y.S., 2016. Building Damage Assessment Using Scenario Based Tsunami Numerical Analysis and Fragility Curves. Journal of Water, 8(3), 109. https://doi.org/10.3390/w8030109   DOI
28 Titov, V.V., Gonzalez, F.I., Bernard, E.N., Eble, M.C., Mofjeld, H.O., Newman, J.C., Venturato, A.J., 2005. Real-time Tsunami Forecasting: Challenges and Solutions. Natatural Hazards, 35(1), 41-58. https://doi.org/10.1007/s11069-004-2403-3
29 Wang, X., 2008. Numerical Modelling of Surface and Internal Waves over Shallow and Intermediate Water. ph.D. Dissertation, Cornell University, USA.
30 Wu, T.R., Chen, P.F., Tsai, W.T., Chen, G.Y., 2008. Numerical Study on Tsunamis Excited by 2006 Pingtung Earthquake Doublet. Terrestrial, Atmospheric and Oceanic Sciences, 19(6), 705-715. https://doi.org/10.3319/TAO.2008.19.6.705(PT)   DOI
31 Yoon, S.B., 2002, Propagation of Distant Tsunamis over Slowly Varying Topography. Journal of Geophysical Research: ceans, 107(C10), 3140. https://doi.org/10.1029/2001JC000791   DOI
32 Araki, E., Kawaguchi, K., Kaneko, S., Kaneda, Y., 2008. Design of Deep Ocean Submarine Cable Observation Network for Earthquakes and Tsunamis. Proceedings of OCEAN 2008-MTS/IEEE Kobe Techno=Ocean, Kobe Japan, 1-4. https://doi.org/10.1109/OCEANSKOBE.2008.4531071
33 Abe, I., Imamura, F., 2013. Problems and Effects of a Tsunami Inundation Forecast System During the 2011 Tohoku Earthquake. Journal of Japan Society of Civil Engineers, 1(1), 516-520. https://doi.org/10.2208/journalofjsce.1.1_516
34 Levin, B., Nosov, M., 2009. Physics of Tsunami. Springer.