Browse > Article
http://dx.doi.org/10.5831/HMJ.2021.43.3.465

SYMMETRIC TOEPLITZ DETERMINANTS ASSOCIATED WITH A LINEAR COMBINATION OF SOME GEOMETRIC EXPRESSIONS  

Ahuja, Om P. (Department of Mathematics, Kent State University)
Khatter, Kanika (Department of Mathematics, Hindu Girls College)
Ravichandran, V. (Department of Mathematics, National Institute of Technology)
Publication Information
Honam Mathematical Journal / v.43, no.3, 2021 , pp. 465-481 More about this Journal
Abstract
Let f be the function defined on the open unit disk, with f(0) = 0 = f'(0) - 1, satisfying Re (αf'(z) + (1 - α)zf'(z)/f(z)) > 0 or Re (αf'(z) + (1 - α)(1 + zf"(z)/f'(z)) > 0 respectively, where 0 ≤ α ≤ 1. Estimates for the Toeplitz determinants have been obtained when the elements are the coefficients of the functions belonging to these two subclasses.
Keywords
Starlike functions; convex functions; close-to-convex functions; Toeplitz determinants;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Singh, S. Gupta and S. Singh, On a problem in the theory of univalent functions, Gen. Math. 17 (2009), no. 3, 135-139.
2 S. E. Warschawski, On the higher derivatives at the boundary in conformal mapping, Trans. Amer. Math. Soc. 38 (1935), no. 2, 310-340.   DOI
3 K. Ye and L.-H. Lim, Every matrix is a product of Toeplitz matrices, Found. Comput. Math. 16 (2016), no. 3, 577-598.   DOI
4 S. S. Miller, P. T. Mocanu and M. O. Reade, Starlike integral operators, Pacific J. Math. 79 (1978), no. 1, 157-168.   DOI
5 O. P. Ahuja and H. Silverman, Classes of functions whose derivatives have positive real part, J. Math. Anal. Appl. 138 (1989), no. 2, 385-392.   DOI
6 N. M. Alarifi, R. M. Ali and V. Ravichandran, On the second Hankel determinant for the kth-root transform of analytic functions, Filomat 31 (2017), no. 2, 227-245.   DOI
7 H. S. Al-Amiri and M. O. Reade, On a linear combination of some expressions in the theory of the univalent functions, Monatsh. Math. 80 (1975), no. 4, 257-264.   DOI
8 M. F. Ali, D. K. Thomas and A. Vasudevarao, Toeplitz determinants whose elements are the coefficients of analytic and univalent functions, Bull. Aust. Math. Soc. 97 (2018), no. 2, 253-264.   DOI
9 U. Grenander and G. Szego, Toeplitz forms and their applications, California Monographs in Mathematical Sciences, University of California Press, Berkeley, 1958.
10 K. Khatter, V. Ravichandran and S. Sivaprasad Kumar, Third Hankel determinant of starlike and convex functions, J. Anal. 28 (2020), no. 1, 45-56.   DOI
11 B. Kowalczyk et al., The third-order Hermitian Toeplitz determinant for classes of functions convex in one direction, Bull. Malays. Math. Sci. Soc. 43 (2020), no. 4, 3143-3158.   DOI
12 A. Lecko, Y. J. Sim and B. Smiarowska, The fourth-order Hermitian Toeplitz determinant for convex functions, Anal. Math. Phys. 10 (2020), no. 3, Paper No. 39, 11 pp.   DOI
13 S. K. Lee, V. Ravichandran and S. Supramaniam, Bounds for the second Hankel determinant of certain univalent functions, J. Inequal. Appl. 2013, 2013:281, 17 pp.   DOI
14 S. S. Miller, P. Mocanu and M. O. Reade, All α-convex functions are univalent and starlike, Proc. Amer. Math. Soc. 37 (1973), 553-554.   DOI
15 V. Radhika, S. Sivasubramanian, G. Murugusundaramoorthy and J.M. Jahangiri, Toeplitz matrices whose elements are the coefficients of functions with bounded boundary rotation, J. Complex Anal. 2016, Art. ID 4960704, 4 pp.
16 V. Kumar, S. Kumar and V. Ravichandran, Third Hankel determinant for certain classes of analytic functions, in Mathematical analysis. I. Approximation theory, 223-231, Springer Proc. Math. Stat., 306, Springer, Singapore.
17 P. T. Mocanu, Une propriete de convexite generalisee dans la theorie de la representation conforme, Mathematica (Cluj) 11(34) (1969), 127-133.
18 K. Noshiro, On the theory of schlicht functions, J. Fat. Sci. Hokkaido Univ. Ser. I 2 (1934), 29-155.
19 W. K. Hayman, Research problems in function theory, The Athlone Press University of London, London, 1967.