Browse > Article
http://dx.doi.org/10.5831/HMJ.2020.42.3.449

A FIXED POINT APPROACH TO THE STABILITY OF THE ADDITIVE-CUBIC FUNCTIONAL EQUATIONS  

Jin, Sun-Sook (Department of Mathematics Education, Gongju National University of Education)
Lee, Yang-Hi (Department of Mathematics Education, Gongju National University of Education)
Publication Information
Honam Mathematical Journal / v.42, no.3, 2020 , pp. 449-460 More about this Journal
Abstract
In this paper, we investigate the stability of the additive-cubic functional equations f(x+ky)+f(x-ky)-k2 f(x+y)-k2 f(x-y)+(k2-1)f(x) - (k2-1)f(-x) = 0, f(x+ky)-f(ky-x)-k2 f(x+y)+k2 f(y-x)+2(k2-1)f(x)= 0, f(kx+y)+f(kx-y)-kf(x+y)-kf(x-y)-2f(kx)+2kf(x)= 0 by using the fixed point theory in the sense of L. Cădariu and V. Radu.
Keywords
fixed point method; additive-cubic functional equation;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 M. Arunkumar, P. Agilan, and S. Ramamoorthi, Perturbation of AC-mixed type functional equation, In Proceedings of National conference on Recent Trends in Mathematics and Computing (NCRTMC-2013) 7-14.
2 M. Arunkumar, C. Devi, S. Mary, Perturbation of Ac-Mixed Type Functional Equation: A Fixed Point Approach, International Journal of Computing Algoritheorem 3 (2014), 1060-1066.
3 L. Cadariu and V. Radu, Fixed points and the stability of quadratic functional equations, An. Univ. Timisoara Ser. Mat.-Inform. 41 (2003), 25-48.
4 L. Cadariu and V. Radu, On the stability of the Cauchy functional equation: a fixed point approach in Iteration Theory, Grazer Mathematische Berichte, Karl-Franzens-Universitaet, Graz, Graz, Austria 346 (2004), 43-52.
5 J. B. Diaz and B. Margolis, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc. 74 (1968), 305-309.   DOI
6 A. Ebadian and S. Zolfaghari, Stability of a mixed additive and cubic functional equation in several variables in non-Archimedean spaces, S. Ann. Univ. Ferrara 58(2) (2012), 291-306.   DOI
7 P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. and Appl. 184 (1994), 431-436.   DOI
8 D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA 27 (1941), 222-224.   DOI
9 K.-W.Jun and H.-M. Kim, Ulam stability problem for a mixed type of cubic and additive functional equation, Bull. Belg. Math. Soc. 13(2) (2006), 271-285.   DOI
10 S.-S. Jin and Y.-H. Lee, A fixed point approach to the stability of a quadratic-cubic functional equation, Korean J. Math. 27 (2019), 343-355.   DOI
11 S.-S. Jin and Y.-H. Lee, A fixed point approach to the stability of the quadratic and quartic type functional equation, J. Chungcheong Math. Soc. 32 (2019), 337-347.   DOI
12 S.-S. Jin and Y.-H. Lee, On the Hyers-Ulam-Rassias stability of an additive-cubic functional equation, Int. J. Math. Anal. (Ruse) 13(2) (2019), 213-221.   DOI
13 Y.-H. Lee, A fixed point approach to the stability of a quadratic-cubic-quartic functional equation, East Asian Math. J. 35 (2019), 559-568.   DOI
14 K. Ravi, R. Kodandan and P. Narasimman, Stability of cubic and additive functional equation in quasi-Banach spaces, Int. J. Pure Appl. Math. 54 (2009), 111-127.
15 A. Najati and G. Z. Eskandani, Stability of a mixed additive and cubic functional equation in quasi-Banach spaces, J. Math. Anal. Appl. 342 (2008), 1318-1331.   DOI
16 J. M. Rassias, K.Ravi, M. Arunkumar and B. V. S. Kumar, Solution and Ulam stability of mixed type cubic and additive functional equation, Functional Ulam Notions (F.U.N) Nova Science Publishers, 2010, Chapter 13, 149-175.
17 Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.   DOI
18 T. Z. Xu, J. M. Rassias, and W. X. Xu, Intuitionistic fuzzy stability of a general mixed additive-cubic equation, J. Math. Phys. 51 (2010), 063519.   DOI
19 Z. Wang and P. K. Sahoo, Approximation of the mixed additive and cubic functional equation in paranormed spaces, Journal of Nonlinear Sciences and Apllications (JNSA) 10(5) (2017), 2633-2641.   DOI
20 T. Z. Xu, and J. M. Rassias, On the Hyers-Ulam stability of a general mixed additive and cubic functional equation in n-Banach spaces, Abstr. Appl. Anal. 2012 ( 2012), Article ID 926390, 23 pages.
21 T. Z. Xu, J. M. Rassias, and W. X. Xu, On the stability of a general mixed additive-cubic functional equation in random normed spaces, J. Inequal. Appl. 328473 2010 (2010), 16 pages.
22 T. Z. Xu, J. M. Rassias, and W. X. Xu, A fixed point approach to the stability of a general mixed additive-cubic functional equation in quasi fuzzy normed spaces, International Journal of the Physical Sciences 6(2) (2011), 313-324.
23 Additive-cubic functional equations from additive groups into non-Archimedean Banach spaces, Filomat 27(5) (2013), 731-738.   DOI
24 S.M. Ulam, Problems in Modern Mathematics, Wiley, New York, 1964.