Browse > Article
http://dx.doi.org/10.5831/HMJ.2015.37.4.397

A NOTE ON A CLASS OF CONVOLUTION INTEGRAL EQUATIONS  

LUO, MIN-JIE (Department of Mathematics, East China Normal University)
RAINA, R.K. (Department of Mathematics, M.P. University of Agriculture and Technology)
Publication Information
Honam Mathematical Journal / v.37, no.4, 2015 , pp. 397-409 More about this Journal
Abstract
This paper considers a class of new convolution integral equations whose kernels involve special functions such as the generalized Mittag-Leffler function and the extended Kummer hypergeometric function. Some basic properties of interconnection with the familiar Riemann-Liouville operators are obtained which are used in fiding the solution of the main convolution integral equation. Several consequences are deduced from the main result by incorporating certain extended forms of hypergeometric functions in our present investigation.
Keywords
convolution integral equation; fractional integral operator; extended hypergeometric function;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 M. A. Chaudhry, A. Qadir, M. Rafique, S. M. Zubair, Extension of Euler's betafunction, J. Comput. Appl. Math. 78 (1997), 19-32.   DOI
2 M. A. Chaudhry, A. Qadir, H. M. Srivastava, R. B. Paris, Extended hyperge-ometric and confluent hypergeometric functions, Appl. Math. Comput. 159(2) (2004), 589-602.   DOI
3 M. A. Chaudhry and S. M. Zubair, On a Class of Incomplete Gamma Functions with Applications, Chapman and Hall (CRC Press), London, 2001.
4 A. Chouhan and S. Saraswat, On solution of generalized kinetic equation of fractional order, Intern. J. Math. Sci. Applic. 2(2) (2012), 813-818.
5 B. B. Jaimini and J. Gupta, On certain fractional differential equations involving generalized multivariable Mittag-Leffler function, Note Mat. 32(2) (2012), 141-156.
6 A. A. Kilbas, M. Saigo and R. K. Saxena, Solution of Volterra integro-differential equations with generalized Mittag-Leffler function in the kernels, J. Integral Eqns. Appl. 14(4) (2002), 377-396.   DOI
7 A. A. Kilbas, H. M. Srivastava, and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematical Studies 204, Elsevier (North-Holland) Science Publishers, Amsterdam, 2006.
8 Min-Jie Luo and R.K. Raina, A note on the generalized Euler transformation, Math. Sci. Res. J. 17(6) (2013), 123-128.
9 K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, New York: John Wiley & Sons, 1993.
10 F. W. J. Olver, D. W. Lozier, R. F. Boisvert, C. W. Clark (Eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, New York, 2010.
11 T. R. Prabhakar, A singular integral equation with a generalized Mittag-Leffler function in the kernel, Yokohama Math. J. 19 (1971), 7-15.
12 J. C. Prajapati, R. K. Jana, R. K. Saxena, and A.K. Shukla, Some results on the generalized Mittag-Leffler function operator, J. Inequal. Appl. 2013(33) (2013), 1-6.   DOI
13 R. K. Raina, On generalized Wright's hypergeometric functions and fractional calculus operators, East Asian Math. J. 21(2) (2005), 191-203.
14 S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, New York: Gordon and Breach, 1993.
15 R. K. Saxena and S. L. Kalla, Solution of Volterra-type integro-differential equations with a generalized Lauricella confluent hypergeometric function in the kernels, Internat. J. Math. Math. Sci. 8 (2005), 1155-1170.
16 H. M. Srivastava and R. G. Buschman, Theory and Applications of Convolution Integral Equations, Math. Appl. 79, Kluwer Academic Publ., Dordrecht, 1992.
17 H. M. Srivastava, R. K. Parmar, and P. Chopra, A class of extended fractional derivative operators and associated generating relations involving hypergeometric functions, Axioms 1 (2012), 238-258.   DOI
18 H. M. Srivastava and Zivorad Tomovski, Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernel, Appl. Math. Comput. 211 (2009), 198-210.   DOI