1 |
H. Bass, On the ubiquity of Gorenstein rings, Math. Z 82 (1963), 8-28.
DOI
|
2 |
A. Brown, A Structure Theorem for a Class of Grade Three Perfect Ideals, J. Algebra 105 (1987), 308-327.
DOI
|
3 |
D. A. Buchsbaum and D. Eisenbud, What makes the complex exact?, J. Algebra 25 (1973), 259-268.
DOI
|
4 |
D. A. Buchsbaum and D. Eisenbud, Algebra structures for finite free resolutions and some structure theorems for ideals of codimension 3, Amer. J. Math. 99(3) (1977), 447-485.
DOI
ScienceOn
|
5 |
Eun Jeong Choi, Oh-Jin Kang, and Hyoung J. Ko, On the structure of the grade three perfect ideals of type three, Commun. Korean Math. Soc. 23(4) (2008), 487-497.
과학기술학회마을
DOI
|
6 |
Yong S. Cho, Oh-Jin Kang, and Hyoung J. Ko, Perfect ideals of grade three defined by skew-symmetrizable matrices, Bull. Korean Math. Soc. 49(4) (2012), 715-736.
|
7 |
Yong S. Cho, A structure theorem for a class of Gorenstein ideals of grade four, Honam Mathematical J. 36(2) (2014), 387-398.
DOI
|
8 |
A. Kustin and M. Miller, Structure theory for a class of grade four Gorenstein ideals, Trans. Amer. Math. Soc. 270 (1982), 287-307.
DOI
ScienceOn
|
9 |
E. S. Golod, A note on perfect ideals, from the collection "Algebra" (A. I. Kostrikin,Ed), Moscow State Univ. Publishing House (1980), 37-39.
|
10 |
Oh-Jin Kang and Hyoung J. Ko, The structure theorem for Complete Intersections of grade 4, Algebra Collo. 12(2) (2005), 181-197.
DOI
|
11 |
C. Peskine and L. Szpiro, Liaison des varietes algebriques, Invent. Math. 26 (1974), 271-302
DOI
|
12 |
R. Sanchez, A Structure Theorem for Type 3, Grade 3 Perfect Ideals, J. Algebra 123 (1989), 263-288.
DOI
|
13 |
Oh-Jin Kang, Yong S. Cho and Hyoung J. Ko, Structure theory for some classes of grade 3 perfect ideals, J. Algebra 322 (2009), 2680-2708.
DOI
ScienceOn
|