Browse > Article
http://dx.doi.org/10.5831/HMJ.2013.35.3.445

CONVOLUTION SUMS OF ODD AND EVEN DIVISOR FUNCTIONS  

Kim, Daeyeoul (National Institute for Mathematical Sciences)
Publication Information
Honam Mathematical Journal / v.35, no.3, 2013 , pp. 445-506 More about this Journal
Abstract
Let ${\sigma}_s(N)$ denote the sum of the s-th power of the positive divisors of N and ${\sigma}_{s,r}(N;m)={\sum_{d{\mid}N\\d{\equiv}r\;mod\;m}}\;d^s$ with $N,m,r,s,d{\in}\mathbb{Z}$, $d,s$ > 0 and $r{\geq}0$. In a celebrated paper [33], Ramanuja proved $\sum_{k=1}^{N-1}{\sigma}_1(k){\sigma}_1(N-k)=\frac{5}{12}{\sigma}_3(N)+\frac{1}{12}{\sigma}_1(N)-\frac{6}{12}N{\sigma}_1(N)$ using elementary arguments. The coefficients' relation in this identity ($\frac{5}{12}+\frac{1}{12}-\frac{6}{12}=0$) motivated us to write this article. In this article, we found the convolution sums $\sum_{k<N/m}{\sigma}_{1,i}(dk;2){\sigma}_{1,j}(N-mk;2)$ for odd and even divisor functions with $i,j=0,1$, $m=1,2,4$, and $d{\mid}m$. If N is an odd positive integer, $i,j=0,1$, $m=1,2,4$, $s=0,1,2$, and $d{\mid}m{\mid}2^s$, then there exist $u,a,b,c{\in}\mathbb{Z}$ satisfying $\sum_{k& lt;2^sN/m}{\sigma}_{1,i}(dk;2){\sigma}_{1,j}(2^sN-mk;2)=\frac{1}{u}[a{\sigma}_3(N)+bN{\sigma}_1(N)+c{\sigma}_1(N)]$ with $a+b+c=0$ and ($u,a,b,c$) = 1(Theorem 1.1). We also give an elementary problem (O) and solve special cases of them in (O) (Corollary 3.27).
Keywords
Divisor functions; Convolution sums;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 E. Royer, Evaluating convolution sums of the divisor function by quasimodular forms, Int. J. Number Theory 3 (2007), 231-261.   DOI   ScienceOn
2 J. H. Silverman, Advanced topics in the arithmetic of elliptic curves, Springer- Verlag, 1994.
3 N. P. Skoruppa, A quick combinatorial proof of Eisenstein series identities, J. Number Theory 43 (1993), 68-73.   DOI   ScienceOn
4 K. S. Williams, Number Theory in the Spirit of Liouville, London Mathematical Society, Student Texts 76, Cambridge, (2011).
5 K. S. Williams, The convolution sum ${\Sigma}_{m, Pacific J. Math. 228 (2006), 387-396.   DOI
6 K. S. Williams, The convolution sum ${\Sigma}_{m, Int. J. Number Theory 2 (2005), 193-205.
7 H. Hahn, Convolution sums of some functions on divisors, Rocky Mountain J. Math. 37 (2007), 1593-1622.   DOI   ScienceOn
8 J. G. Huard, Z. M. Ou, B. K. Spearman, and K. S. Williams, Elementary Evaluation of Certain Convolution Sums Involving Divisor Functions, Number theory for the millennium, II, (2002), 229-274.
9 A. Kim, D. Kim, Yan Li, Convolution sums arising from divisor functions, J. Korean Math. Soc. 50(2) (2013), 331-360.   DOI   ScienceOn
10 D. Kim and M. Kim, Divisor functions and Weierstrass functions arising from q series, Bull. of Korean Math. Soc. 49(4) (2012), 693-704.   과학기술학회마을   DOI   ScienceOn
11 D. B. Lahiri, On Ramanujan's function ${\tau}$ (n) and the divisor functions ${\sigma}$ (n), I, Bull. Calcutta Math. Soc. 38 (1946), 193-206.
12 D. H. Lehmer, Some functions of Ramanujan, Math. Student 27 (1959), 105-116.
13 D. H. Lehmer, Selected papers, Vol. II, Charles Babbage Research Centre, St. Pierre, Manitoba, (1981).
14 M. Lemire and K. S. Williams, Evaluation of two convolution sums involving the sum of divisor functions, Bull. Aust. Math. Soc. 73 (2005), 107-115.
15 S. Ramanujan, On certain arithmetical functions, Trans. Cambridge Philos. Soc. 22 (1916), 159-184.
16 J. Liouville, Sur quelques formules generales qui peuvent etre utiles dans la theorie des nombres, Jour. de Math. (2) (1858-1865).
17 P. A. MacMahon, Divisors of numbers and their continuations in the theory of partitions, Proc. London Math. Soc. (2) 19 (1920), 75-113.
18 G. Melfi, On some modular identities, de Gruyter, Berlin, 1998, 371-382.
19 S. Ramanujan, Collected papers, AMS Chelsea Publishing, Providence, RI, (2000).
20 M. Besgue, Extrait d'une lettre de M. Besgue a M Liouville, J. Math. Pures Appl. 7 (1862), 256.
21 H. H. Chan, and S. Cooper, Powers of theta functions, Pacific Journal of Mathematics, 235 (2008), 1-14.   DOI
22 N. Cheng and K. S. Williams, Convolution sums involving the divisor functions, Proc. Edinburgh Math. Soc. 47 (2004), 561-572.   DOI   ScienceOn
23 B. Cho, D. Kim and J. K. Koo, Divisor functions arising from q-series, Publ. Math. Debrecen 76 (2010), 495-508.
24 B. Cho, D. Kim and J. K. Koo, Modular forms arising from divisor functions, J. Math. Anal. Appl. 356 (2009), 537-547.   DOI   ScienceOn
25 S. Cooper and P. C. Toh, Quintic and septic Eisenstein series, Ramanujan J. 19 (2009), 163-181.   DOI
26 S. Lang, Elliptic functions, Addison-Wesly, 1973.
27 L. E. Dickson, History of the Theory of Numbers, Vol.I, Chelsea Publ. Co., New York, 1952.
28 L. E. Dickson, History of the Theory of Numbers, Vol.II, Chelsea Publ. Co., New York, 1952.
29 J. W. L. Glaisher, On the square of the series in which the coefficients are the sums of the divisors of the exponents, Mess. Math. 14 (1884), 156-163.
30 N. J. Fine, Basic hypergeometric series and applications, American Mathematical Society, Providence, RI, 1988.
31 J. W. L. Glaisher, On certain sums of products of quantities depending upon the divisors of a number, Mess. Math. 15 (1885), 1-20.
32 J. W. L. Glaisher, Expressions for the five powers of the series in which the coefficients are the sums of the divisors of the exponents, Mess. Math. 15 (1885), 33-36.
33 J. W. L. Glaisher, On the square of the series in which the coefficients are the sums of the divisors of the exponents, Mess. Math. 14 (1884).
34 A. Alaca, S. Alaca and K. S. Williams, The convolution sum ${\Sigma}_{m, Canad. Math. Bull. 51 (2008), 3-14.   DOI
35 A. Alaca, S. Alaca and K. S. Williams, The convolution sums ${\Sigma}_{l+24m=n}$ ${\sigma}(l){\sigma}(m)$ and ${\Sigma}_{3l+8m=n}$, M. J. Okayama Univ. 49 (2007), 93-111.
36 S. Alaca and K. S. Williams, Evaluation of the convolution sums ${\Sigma}_{l+6m=n}$ ${\sigma}(l){\sigma}(m)$ and ${\Sigma}_{2l+3m=n}$ ${\sigma}(l){\sigma}(m)$, J. Number Theory, 124 (2007), 491-510.   DOI   ScienceOn
37 A. Alaca, S. Alaca and K. S. Williams, Evaluation of the convolution sums ${\Sigma}_{l+12m=n}$ ${\sigma}(l){\sigma}(m)$ and ${\Sigma}_{3l+4m=n}$ ${\sigma}(l){\sigma}(m)$, Adv. Theor. and Appl. Math. 1 (2006), 27-48.
38 A. Alaca, S. Alaca and K. S. Williams, Evaluation of the convolution sums ${\Sigma}_{l+18m=n}$ ${\sigma}(l){\sigma}(m)$ and ${\Sigma}_{2l+9m=n}$ ${\sigma}(l){\sigma}(m)$, Int. J. Math. Sci. 2 (2007), 45-68.
39 A. Alaca, S. Alaca and K. S. Williams, Ottawa Evaluation of the sums ${\Sigma}_{m=1m{\equiv}a\;(mod\;4)}^{n-1}$ ${\sigma}(m){\sigma}(n-m)$, Czechoslovak Math. J. 134 (2009), 847-859.
40 B. C. Berndt, Ramanujan's Notebooks, Part II. Springer-Verlag, New York, 1989.