Browse > Article
http://dx.doi.org/10.22246/jikm.2020.41.3.326

The Effect of Adding Kami-guibi-tang to Acetylcholinesterase Inhibitor Treatment on the Cognitive Function of Mild Alzheimer's Disease Patients: Study Protocol of a Randomized, Placebo-Controlled, Double-Blind Pilot Trial  

Yang, Seung-bo (Dept. of Korean Internal Medicine, College of Korean Medicine, Gachon University)
Kim, Ha-ri (Stroke and Neurological Disorders Center, Kyung Hee University Hospital at Gangdong)
Shin, Hee-yeon (Stroke and Neurological Disorders Center, Kyung Hee University Hospital at Gangdong)
Kim, Jeong-hwa (Stroke and Neurological Disorders Center, Kyung Hee University Hospital at Gangdong)
Lee, Chang-woo (Dept. of Clinical Korean Medicine, Graduate School, Kyung Hee University)
Jahng, Geon-ho (Dept. of Radiology, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University)
Park, Seong-uk (Stroke and Neurological Disorders Center, Kyung Hee University Hospital at Gangdong)
Ko, Chang-nam (Stroke and Neurological Disorders Center, Kyung Hee University Hospital at Gangdong)
Park, Jung-mi (Stroke and Neurological Disorders Center, Kyung Hee University Hospital at Gangdong)
Publication Information
The Journal of Internal Korean Medicine / v.41, no.3, 2020 , pp. 326-338 More about this Journal
Abstract
Background: Alzheimer's disease (AD) is a chronic neurodegenerative disease that causes disorientation, mood swings, problems with language, and difficulty remembering recent events. Acetylcholinesterase inhibitors (AchEIs) and memantine have been used to slow the course of the disease, but they can neither modify its progression nor prevent disease onset. Previous studies have suggested that Kami-guibi-tang (KGT) could be beneficial for supporting cognitive function in AD patients, but few clinical trials have been published. This pilot study aimed to evaluate the effect of KGT in improving cognitive function in AD patients. Methods: The study will be a randomized, placebo-controlled, double-blind, single-center trial conducted using subjects diagnosed with mild AD by neurologists. Study subjects will be randomly assigned to either a treatment or control group. The treatment group will receive KGT granules for 24 weeks, while the control group will receive placebo granules. AchEI administration will be maintained in both groups during the entirety of the study. Subjects will be assessed using the following exams: the Seoul Neuropsychologic Screening Battery (SNSB) for cognitive function; brain magnetic resonance imaging (MRI) for brain metabolite, neurotransmitter, and cerebral blood flow (CBF) measurements; the Korean version of Quality of Life-Alzheimer's Disease (KQol-AD) for quality of life; the Caregiver-Administered Neuropsychiatric Inventory (CGA-NPI) for neurobehavioral symptoms; blood tests for amyloid and tau proteins and general blood parameters; and electrocardiography (ECG) before and after taking the medication. Discussion: Our findings will provide insight into the feasibility of large-scale trials to consolidate evidence for the efficacy of KGT for dementia treatment. Registration ID in CRIS: KCT0002904 (Clinical Research Information Service of the Republic of Korea).
Keywords
mild Alzheimer's disease; Kami-guibi-tang; herbal medicine; Seoul neuropsychological screening battery (SNSB); magnetic resonance imaging (MRI);
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Kok E, Haikonen S, Luoto T, Huhtala H, Goebeler S, Haapasalo H, et al. Apolipoprotein E-dependent accumulation of Alzheimer disease-related lesions begins in middle age. Ann Neurol 2009;65(6):650-7.   DOI
2 Folstein MF, Folstein SE, McHugh PR. "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 1975;12(3):189-98.   DOI
3 A validity study on the korean mini-mental state examination (K-MMSE) in dementia patients. J Korean Neurol Assoc 1997;15(2):300-8.
4 Kang Y, Jang SM, Na DL. Seoul Neuropsychological Screening Battery (SNSB-II) 2nd ed. Seoul: Human Brain Research & Consulting Co.; 2012.
5 Thorgrimsen L, Selwood A, Spector A, Royan L, de Madariaga Lopez M, Woods RT, et al. Whose quality of life is it anyway? The validity and reliability of the Quality of Life-Alzheimer's Disease (QoL-AD) scale. Alzheimer Dis Assoc Disord 2003;17(4):201-8.   DOI
6 Shin HY. A preliminary study on the Korean version of quality of life-Alzheimer's disease (QOL-AD) scale in community-dwelling elderly with dementia. J Prev Med Public Health 2006;39(3):243-8.
7 Kang SJ, Choi SH, Lee BH, Jeong Y, Hahm DS, Han IW, et al. Caregiver-Administered Neuropsychiatric Inventory (CGA-NPI). J Geriatr Psychiatry Neurol 2004;17(1):32-5.   DOI
8 Harper L, Barkhof F, Scheltens P, Schott JM, Fox NC. An algorithmic approach to structural imaging in dementia. J Neurol Neurosurg Psychiatry 2014;85(6):692-8.   DOI
9 Citron M. Alzheimer's disease: strategies for disease modification. Nat Rev Drug Discov 2010;9(5):387-98.   DOI
10 Hilal S, Amin SM, Venketasubramanian N, Niessen WJ, Vrooman H, Wong TY, et al. Subcortical Atrophy in Cognitive Impairment and Dementia. J Alzheimers Dis 2015;48(3):813-23.   DOI
11 Griffith HR, Stewart CC, den Hollander JA. Proton magnetic resonance spectroscopy in dementias and mild cognitive impairment. Int Rev Neurobiol 2009;84:105-31.   DOI
12 Chao LL, Buckley ST, Kornak J, Schuff N, Madison C, Yaffe K, et al. ASL perfusion MRI predicts cognitive decline and conversion from MCI to dementia. Alzheimer Dis Assoc Disord 2010;24(1):19-27.   DOI
13 Burns A, Iliffe S. Alzheimer's disease. Bmj 2009;338:b158.   DOI
14 Reisberg B, Franssen EH, Bobinski M, Auer S, Monteiro I, Boksay I, et al. Overview of methodologic issues for pharmacologic trials in mild, moderate, and severe Alzheimer's disease. Int Psychogeriatr 1996;8(2):159-93.   DOI
15 Karttunen K, Karppi P, Hiltunen A, Vanhanen M, Valimaki T, Martikainen J, et al. Neuropsychiatric symptoms and quality of life in patients with very mild and mild Alzheimer's disease. Int J Geriatr Psychiatry 2011;26(5):473-82.   DOI
16 Wimo A, Jöns on L, Bond J, Prince M, Winblad B. The worldwide economic impact of dementia 2010. Alzheimers Dement 2013;9(1):1-11.e3.   DOI
17 O'Brien JT, Holmes C, Jones M, Jones R, Livingston G, McKeith I, et al. Clinical practice with anti-dementia drugs: A revised (third) consensus statement from the British Association for Psychopharmacology. J Psychopharmacol 2017;31(2):147-68.   DOI
18 Porges EC, Woods AJ, Edden RA, Puts NA, Harris AD, Chen H, et al. Frontal Gamma-Aminobutyric Acid Concentrations Are Associated With Cognitive Performance in Older Adults. Biol Psychiatry Cogn Neurosci Neuroimaging 2017;2(1):38-44.
19 Beason-Held LL, Goh JO, An Y, Kraut MA, O'Brien RJ, Ferrucci L, et al. Changes in brain function occur years before the onset of cognitive impairment. J Neurosci 2013;33(46):18008-14.   DOI
20 Lipczynska-Lojkowska W, Ryglewicz D, Jedrzejczak T, Jakubowska T, Kotapka-Minc S, Sienkiewicz-Jarosz H, et al. The effect of rivastigmine on cognitive functions and regional cerebral blood flow in Alzheimer's disease and vascular dementia: follow-up for 2 years. Neurol Neurochir Pol 2004;38(6):471-81.
21 Walsh DM, Teplow DB. Alzheimer's disease and the amyloid $\beta$-protein. Prog Mol Biol Transl Sci 2012;107:101-24.   DOI
22 Martin L, Latypova X, Wilson CM, Magnaudeix A, Perrin ML, Yardin C, et al. Tau protein kinases: involvement in Alzheimer's disease. Ageing Res Rev 2013;12(1):289-309.   DOI
23 Cho SI, Jo SH, Jin CS. Effects of the Guipi-Tang and Placenta Hominis Blended Guipi-Tang on the Changes of Body Weight and Lipid Metabolism in Ovariectomized Rats. The Korea journal of herbology 2004;19(3):85-90.
24 Meneghini V, Bortolotto V, Francese MT, Dellarole A, Carraro L, Terzieva S, et al. High-mobility group box-1 protein and $\beta$-amyloid oligomers promote neuronal differentiation of adult hippocampal neural progenitors via receptor for advanced glycation end products/nuclear $factor-{\kappa}B$ axis: relevance for Alzheimer's disease. J Neurosci 2013;33(14):6047-59.   DOI
25 Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. Science 1993;261(5123):921-3.   DOI
26 Eun JS, Song JM. Effects of Kwibi-tang on Serum Levels of Hormone and the Non-Specific Immune Response after Immobilization Stress in Mice. Korean Journal of Oriental Physiology & Pathology 2004;18(1):172-8.
27 Jeon HJ, Park SW, Lee I, Mun BS. Effects of Gwibitang on Glutamate-induced Death in Rat Neonatal Astrocytes. J Korean Oriental Med 2004;25(2):184-93.
28 Park IK, Kim KJ. A Study on the Homostatic Effects of Guipitang and Guipitangjiaweifang Extracts in Experimental Animals. The journal of Korean oriental medical ophthalmology & otolaryngology & dermatology 2003;16(1):63-76.
29 Kim HJ, Choi JH, Lim SW. The Defensive Effect of Keuibi-tang on the Gastric Mucous Membrane of Mouse Injured by Stress and Ethanol. Journal of Korean Medicine 2003;24(1):155-68.
30 Jung YC, Kim DC, Back SH, Kim EH. The Effect of Guibitang(歸脾湯) on the Ovarian Functions and Differential Gene Expression of Caspase-3, MAPK and MPG in Female Mice. The Journal of Korean Obstetrics & Gynecology 2007;20(3):13-34.
31 Oh MS, Huh Y, Bae H, Ahn DK, Park SK. The multi-herbal formula Guibi-tang enhances memory and increases cell proliferation in the rat hippocampus. Neuroscience letters 2005;379(3):205-8.   DOI
32 Kim SH, Lee SE, Oh H, Yang JA, Chung CY, Jang JS, et al. The Radioprotective Effect of Kuei-Pi-Tang as a prescription of Traditional Chinese Medicine in Mice. Journal of the Korean Society of Food Science and Nutrition 1999;28(3):698-704.
33 Kim JH, Lee JK, Ha HK, Seo CS, Lee MY, Lee HY, et al. Analysis of Studies on Guibi-tang (Guipitang) for Fundamental Establishment of Evidence Based Medicine(EBM). Journal of Oriental Neuropsychiatry 2009;20(3):205-16.
34 Qian YH, Han H, Hu XD, Shi LL. Protective effect of ginsenoside Rb1 on beta-amyloid protein(1-42)-induced neurotoxicity in cortical neurons. Neurol Res 2009;31(7):663-7.   DOI
35 Ishida K. Effect of donepezil and kamikihito combination therapy on cognitive function in A lzheimer's disease: R etrospective study. Traditional & Kampo Medicine 2016;3(2):94-9.   DOI
36 馬込敦. 認知症に對する加味歸脾湯の効果. 漢方と最新治療 2014;23(2):135-40.
37 Egashira N, Manome N, Kurauchi K, Matsumoto Y, Iwasaki K, Mishima K, et al. Kamikihi-to, a Kampo medicine, ameliorates impairment of spatial memory in rats. Phytother Res 2007;21(2):126-9.   DOI
38 Tohda C, Nakada R, Urano T, Okonogi A, Kuboyama T. Kamikihi-to (KKT) rescues axonal and synaptic degeneration associated with memory impairment in a mouse model of Alzheimer's disease, 5XFAD. Int J Neurosci 2011;121(12):641-8.   DOI
39 Lee JW, Cho DG, Cho WS, Ahn HG, Lee HJ, Shin JW, et al. Effect of Guibi-tang on Neuronal Apoptosis and Cognitive Impairment Induced by Beta Amyloid in Mice. Journal of Korean medicine 2014;35(4):10-23.   DOI
40 Zhang H, Han T, Zhang L, Yu CH, Wan DG, Rahman K, et al. Effects of tenuifolin extracted from radix polygalae on learning and memory: a behavioral and biochemical study on aged and amnesic mice. Phytomedicine 2008;15(8):587-94.   DOI
41 Nogami-Hara A, Nagao M, Takasaki K, Egashira N, Fujikawa R, Kubota K, et al. The Japanese Angelica acutiloba root and yokukansan increase hippocampal acetylcholine level, prevent apoptosis and improve memory in a rat model of repeated cerebral ischemia. J Ethnopharmacol 2018;214:190-6.   DOI
42 Cho MJ, Kim JH, Park CH, Lee AY, Shin YS, Lee JH, et al. Comparison of the effect of three licorice varieties on cognitive improvement via an amelioration of neuroinflammation in lipopolysaccharide-induced mice. Nutr Res Pract 2018;12(3):191-8.   DOI