Browse > Article
http://dx.doi.org/10.5658/WOOD.2022.50.1.12

Synergistic Antifungal Activity of Phellodendri Cortex and Magnoliae Cortex against Candida albicans  

NA, Hyunjeong (Department of Forest Products and Biotechnology, College of Science and Technology, Kookmin University)
KIM, Tae-Jong (Department of Forest Products and Biotechnology, College of Science and Technology, Kookmin University)
Publication Information
Journal of the Korean Wood Science and Technology / v.50, no.1, 2022 , pp. 12-30 More about this Journal
Abstract
Many studies on plant extracts have been reported for the treatment of candidiasis caused by Candida albicans, a representative fungal infection. This study demonstrates the synergistic antifungal activity of the combination of Phellodendri Cortex and Magnoliae Cortex, previously reported to have antifungal efficacy. Considering the antifungal efficacy and the separation of the active constituents, berberine and magnolol, hot water extraction and carbon dioxide supercritical extraction were selected for Phellodendri Cortex and Magnoliae Cortex, respectively. A combination of 0.55 g/L hot water extract of Phellodendri Cortex and 0.59 g/L carbon dioxide supercritical extract of Magnoliae Cortex showed synergistic antifungal activity. The synergistic antifungal activity of 160 μM berberine and 100 μM magnolol, which are representative antifungal compounds of Phellodendri Cortex and Magnoliae Cortex, respectively, contributes to the synergistic antifungal effect of their extracts. The additive decrease in cellular ergosterol level and the increased antifungal efficacy by extracellular ergosterol suggest that disruption of the biological function of ergosterol in the cell membrane is not responsible for the synergistic antifungal activity of berberine and magnolol. Synergistic cellular release of chromosomal DNA upon mixing berberine and magnolol indicates that disruption of the cellular structure is responsible for the synergistic antifungal effect of berberine and magnolol.
Keywords
phellodendri cortex; magnoliae cortex; antifungal activity; synergistic activity; Candida albicans;
Citations & Related Records
Times Cited By KSCI : 10  (Citation Analysis)
연도 인용수 순위
1 Kim, K.S., Kim, H.C. 2004. Analytical method for the determination of standard compounds in oriental medicine materials listed in the Korean Pharmacopoeia (KPVIII). The Korean Society of Crop Science 49(spc1): 117-145.
2 Lee, S.Y., Lee, D.S., Cho, S.M., Kim, J.C., Park, M.J., Choi, I.G. 2021. Antioxidant properties of 7 domestic essential oils and identification of physiologically active components of essential oils against Candida albicans. Journal of the Korean Wood Science and Technology 49(1): 23-43.   DOI
3 Masomi, F., Hassanshahian, M. 2016. Antimicrobial activity of five medicinal plants on Candida albicans. The Iranian Journal of Toxicology 10(6): 39-43.
4 Park, J., Lee, J., Jung, E., Park, Y., Kim, K., Park, B., Jung, K., Park, E., Kim, J., Park, D. 2004a. In vitro antibacterial and anti-inflammatory effects of honokiol and magnolol against Propionibacterium sp. European Journal of Pharmacology 496(1-3): 189-195.   DOI
5 Miron, D., Battisti, F., Silva, F.K., Lana, A.D., Pippi, B., Casanova, B., Gnoatto, S., Fuentefria, A., Mayorga, P., Schapoval, E.E.S. 2014. Antifungal activity and mechanism of action of monoterpenes against dermatophytes and yeasts. Revista Brasileira de Farmacognosia 24(6): 660-667.   DOI
6 Ng, K.P., Kuan, C.S., Kaur, H., Na, S.L., Atiya, N., Velayuthan, R.D. 2015. Candida species epidemiology 2000-2013: A laboratory-based report. Tropical Medicine & International Health 20(11): 1447-1453.   DOI
7 Ni, H., Cai, X., Qiu, X., Liu, L., Ma, X., Wan, L., Ye, H., Chen, L. 2020. Biphenyl-type neolignans from stem bark of Magnolia officinalis with potential anti-tumor activity. Fitoterapia 147: 104769.   DOI
8 Park, K.S., Kang, K.C., Kim, J.H., Adams, D.J., Johng, T.N., Paik, Y.K. 1999. Differential inhibitory effects of protoberberines on sterol and chitin biosyntheses in Candida albicans. Journal of Antimicrobial Chemotherapy 43(5): 667-674.   DOI
9 Parray, H.A., Lone, J., Park, J.P., Choi, J.W., Yun, J.W. 2018. Magnolol promotes thermogenesis and attenuates oxidative stress in 3T3-L1 adipocytes. Nutrition 50: 82-90.   DOI
10 do Nascimento Dias, J., de Souza Silva, C., de Araujo, A.R., Souza, J.M.T., de Holanda Veloso Junior, P.H., Cabral, W.F., da Gloria da Silva, M., Eaton, P., de Souza de Almeida Leite, J.R., Nicola, A.M., Albuquerque, P., Silva-Pereira, I. 2020. Mechanisms of action of antimicrobial peptides ToAP2 and NDBP-5.7 against Candida albicans planktonic and biofilm cells. Scientific Reports 10(1): 10327.   DOI
11 Khan, M.S.A., Ahmad, I., Cameotra, S.S. 2013. Phenyl aldehyde and propanoids exert multiple sites of action towards cell membrane and cell wall targeting ergosterol in Candida albicans. AMB Express 3(1): 54.   DOI
12 Enoch, D.A., Ludlam, H.A., Brown, N.M. 2006. Invasive fungal infections: A review of epidemiology and management options. Journal of Medical Microbiology 55(7): 809-818.   DOI
13 Akroum, S. 2017. Antifungal activity of acetone extracts from Punica granatum L., Quercus suber L. and Vicia faba L. Journal de Mycologie Medicale 27(1): 83-89.   DOI
14 Arthington-Skaggs, B.A., Jradi, H., Desai, T., Morrison, C.J. 1999. Quantitation of ergosterol content: Novel method for determination of fluconazole susceptibility of Candida albicans. Journal of Clinical Microbiology 37(10): 3332-3337.   DOI
15 Chen, G., Xu, X., Zhu, Y., Zhang, L., Yang, P. 2006. Determination of honokiol and magnolol in Cortex Magnoliae Officinalis by capillary electrophoresis with electrochemical detection. Journal of Pharmaceutical and Biomedical Analysis 41(4): 1479-1484.   DOI
16 Xian, Y.F., Lin, Z.X., Ip, S.P., Su, Z.R., Chen, J.N., Lai, X.P. 2013. Comparison the neuropreotective effect of Cortex Phellodendri chinensis and Cortex Phellodendri amurensis against beta-amyloid-induced neurotoxicity in PC12 cells. Phytomedicine 20(2): 187-193.   DOI
17 Min, B.S., Bang, K.H., Lee, J.S., Bae, G.H. 1996. Screening of the antifungal activity from natural products against Candida albicans and Penicillium avellaneum. Yakhak Hoeji 40(5): 582-590.
18 Lum, K.Y., Tay, S.T., Le, C.F., Lee, V.S., Sabri, N.H., Velayuthan, R.D., Hassan, H., Sekaran, S.D. 2015. Activity of novel synthetic peptides against Candida albicans. Scientific Reports 5(1): 9657.   DOI
19 Behbehani, J., Shreaz, S., Irshad, M., Karched, M. 2017. The natural compound magnolol affects growth, biofilm formation, and ultrastructure of oral Candida isolates. Microbial Pathogenesis 113: 209-217.   DOI
20 Cernakova, M., Kos?alova, D. 2002. Antimicrobial activity of berberine: A constituent of Mahonia aquifolium. Folia Microbiologica 47(4): 375-378.   DOI
21 Bennis, S., Chami, F., Chami, N., Bouchikhi, T., Remmal, A. 2004. Surface alteration of Saccharomyces cerevisiae induced by thymol and eugenol. Letters in Applied Microbiology 38(6): 454-458.   DOI
22 Brown, G.D., Denning, D.W., Gow, N.A.R., Levitz, S.M., Netea, M.G., White, T.C. 2012. Hidden killers: Human fungal infections. Science Translational Medicine 4(165): 165rv13.   DOI
23 Shen, P., Zhang, Z., He, Y., Gu, C., Zhu, K., Li, S., Li, Y., Lu, X., Liu, J., Zhang, N., Cao, Y. 2018. Magnolol treatment attenuates dextran sulphate sodium-induced murine experimental colitis by regulating inflammation and mucosal damage. Life Sciences 196: 69-76.   DOI
24 Park, K.S., Kang, H.I., Lee, J.W., Paik, Y.K. 2004b. Anti-Candida activity of YH-1715R, a new triazole derivative. Journal of Microbiology and Biotechnology 14(4): 693-697.
25 Saag, M.S., Dismukes, W.E. 1988. Azole antifungal agents: Emphasis on new triazoles. Antimicrobial Agents and Chemotherapy 32(1): 1-8.   DOI
26 Ramamourthy, G., Park, J., Seo, C., Vogel, H.J., Park, Y. 2020. Antifungal and antibiofilm activities and the mechanism of action of repeating lysine-tryptophan peptides against Candida albicans. Microorganisms 8(5): 758.   DOI
27 Oufensou, S., Scherm, B., Pani, G., Balmas, V., Fabbri, D., Dettori, M.A., Carta, P., Malbran, I., Migheli, Q., Delogu, G. 2019. Honokiol, magnolol and its monoacetyl derivative show strong anti-fungal effect on Fusarium isolates of clinical relevance. PLOS ONE 14(9): e0221249.   DOI
28 Tian, X., Xu, Z., Hu, P., Yu, Y., Li, Z., Ma, Y., Chen, M., Sun, Z., Liu, F., Li, J., Huang, C. 2020. Determination of the antidiabetic chemical basis of Phellodendri Chinensis Cortex by integrating hepatic disposition in vivo and hepatic gluconeogenese inhibition in vitro. Journal of Ethnopharmacology 263: 113215.   DOI
29 Tampieri, M.P., Galuppi, R., Macchioni, F., Carelle, M.S., Falcioni, L., Cioni, P.L., Morelli, I. 2005. The inhibition of Candida albicans by selected essential oils and their major components. Mycopathologia 159(3): 339-345.   DOI
30 Taylor, M., Raja, A. 2021. Oral Candidiasis. In: StatPearls. StatPearls Publishing: Treasure Island, FL, USA.
31 Tsai, T.H., Chen, C.F. 1992. Identification and determination of honokiol and magnolol from Magnolia officinalis by high-performance liquid chromatography with phtodiode-array UV detection. Journal of Chromatography A 598(1): 143-146.   DOI
32 Pfaller, M.A., Diekema, D.J. 2007. Epidemiology of invasive candidiasis: A persistent public health problem. Clinical Microbiology Reviews 20(1): 133-163.   DOI
33 Zida, A., Bamba, S., Yacouba, A., Ouedraogo-Traore, R., Guiguemde, R.T. 2017. Anti-Candida albicans natural products, sources of new antifungal drugs: A review. Journal de Mycologie Medicale 27(1): 1-19.   DOI
34 Goncalves, M.J., Piras, A., Porcedda, S., Marongiu, B., Falconieri, D., Cavaleiro, C., Rescigno, A., Rosa, A., Salgueiro, L. 2015. Antifungal activity of extracts from Cynomorium coccineum growing wild in Sardinia island (Italy). Natural Product Research 29(23): 2247-2250.   DOI
35 Hammer, K.A., Carson, C.F., Riley, T.V. 2004. Antifungal effects of Melaleuca alternifolia (tea tree) oil and its components on Candida albicans, Candida glabrata and Saccharomyces cerevisiae. Journal of Antimicrobial Chemotherapy 53(6): 1081-1085.   DOI
36 Patel, M., Coogan, M.M. 2008. Antifungal activity of the plant Dodonaea viscosa var. angustifolia on Candida albicans from HIV-infected patients. Journal of Ethnopharmacology 118(1): 173-176.   DOI
37 Pfaller, M., Chaturvedi, V., Espinel-Ingroff, A., Ghannoum, M.A., Gosey, L.L., Odds, F.C. 2008a. Reference method for broth dilution antifungal susceptibility testing of yeasts; approved standard-second edition. CLSI document M27-A2. The Clinical and Laboratory Standards Institute: Malvern, PA, USA.
38 Pfaller, M.A., Diekema, D.J., Ostrosky-Zeichner, L., Rex, J.H., Alexander, B.D., Andes, D., Brown, S.D., Chaturvedi, V., Ghannoum, M.A., Knapp, C.C., Sheehan, D.J., Walsh, T.J. 2008b. Correlation of MIC with outcome for Candida species tested against caspofungin, anidulafungin, and micafungin: Analysis and proposal for interpretive MIC breakpoints. Journal of Clinical Microbiology 46(8): 2620-2629.   DOI
39 Pristov, K.E., Ghannoum, M.A. 2019. Resistance of Candida to azoles and echinocandins worldwide. Clinical Microbiology and Infection 25(7): 792-798.   DOI
40 Yamamoto, T., Umegawa, Y., Tsuchikawa, H., Hanashima, S., Matsumori, N., Funahashi, K., Seo, S., Shinoda, W., Murata, M. 2019. The amphotericin B-ergosterol complex spans a lipid bilayer as a single-length assembly. Biochemistry 58(51): 5188-5196.   DOI
41 Violante, I.M.P., Hamerski, L., Garcez, W.S., Batista, A.L., Chang, M.R., Pott, V.J., Garcez, F.R. 2012. Antimicrobial activity of some medicinal plants from the cerrado of the central-western region of Brazil. Brazilian Journal of Microbiology 43(4): 1302-1308.   DOI
42 Ham, Y., An, J.E., Lee, S.M., Chung, S.H., Kim, S.H., Park, M.J. 2021. Isolation and identification of fungi associated with decay of Quercus mongolica. Journal of the Korean Wood Science and Technology 49(3): 234-253.   DOI
43 Vincent-Ballereau, F.N., Patey, O.N., Lafaix, C. 1991. Fluconazole: Review and situation among antifungal drugs in the treatment of opportunistic mycoses of human immuno-deficiency virus infections. Pharmaceutisch Weekblad 13(2): 45-57.   DOI
44 Chan, C.O., Chu, C.C., Mok, D.K.W., Chau, F.T. 2007. Analysis of berberine and total alkaloid content in cortex phellodendri by near infrared spectroscopy (NIRS) compared with high-performance liquid chromatography coupled with ultra-visible spectrometric detection. Analytica Chimica Acta 592(2): 121-131.   DOI
45 Espinel-Ingroff, A., Pfaller, M.A., Bustamante, B., Canton, E., Fothergill, A., Fuller, J., Gonzalez, G.M., Lass-Florl, C., Lockhart, S.R., Martin-Mazuelos, E., Meis, J.F., Melhem, M.S.C., Ostrosky-Zeichner, L., Pelaez, T., Szeszs, M.W., St-Germain, G., Bonfietti, L.X., Guarro, J., Turnidge, J. 2014. Multilaboratory study of epidemiological cutoff values for detection of resistance in eight Candida species to fluconazole, posaconazole, and voriconazole. Antimicrobial Agents and Chemotherapy 58(4): 2006-2012.   DOI
46 Cheng, Y.C., Hueng, D.Y., Huang, H.Y., Chen, J.Y., Chen, Y. 2016. Magnolol and honokiol exert a synergistic anti-tumor effect through autophagy and apoptosis in human glioblastomas. Oncotarget 7(20): 29116-29130.   DOI
47 Cuenca-Estrella, M., Gomez-Lopez, A., Mellado, E., Garcia-Effron, G., Rodriguez-Tudela, J.L. 2004. In vitro activities of ravuconazole and four other antifungal agents against fluconazole-resistant or-susceptible clinical yeast isolates. Antimicrobial Agents and Chemotherapy 48(8): 3107-3111.   DOI
48 Richter, S.S., Galask, R.P., Messer, S.A., Hollis, R.J., Diekema, D.J., Pfaller, M.A. 2005. Antifungal susceptibilities of Candida species causing vulvovaginitis and epidemiology of recurrent cases. Journal of Clinical Microbiology 43(5): 2155-2162.   DOI
49 Rajkowska, K., Nowak, A., Kunicka-Styczynska, A., Siadura, A. 2016. Biological effects of various chemically characterized essential oils: Investigation of the mode of action against Candida albicans and HeLa cells. RSC Advances 6(99): 97199-97207.   DOI
50 Rex, J.H., Rinaldi, M.G., Pfaller, M.A. 1995. Resistance of Candida species to fluconazole. Antimicrobial Agents and Chemotherapy 39(1): 1-8.   DOI
51 Saito, J., Fukushima, H., Nagase, H. 2009. Anti-clastogenic effect of magnolol-containing Hange-koboku-to, Dai-joki-to, Goshaku-san, and Magnoliae Cortex on benzo(a)pyrene-induced clastogenicity in mice. Biological and Pharmaceutical Bulletin 32(7): 1209-1214.   DOI
52 Zhao, Y., Yan, D., Wang, J., Zhang, P., Xiao, X. 2010. Anti-fungal effect of berberine on Candida albicans by microcalorimetry with correspondence analysis. Journal of Thermal Analysis and Calorimetry 102(1): 49-55.   DOI
53 Yoon, J., Kim, T.J. 2021. Synergistic antifungal activity of Magnoliae Cortex and Syzyii Flos against Candida albicans. Journal of the Korean Wood Science and Technology 49(2): 142-153.   DOI
54 Yun, J., Shin, H.C., Hwang, W.J., Yoon, S.M., Kim, Y.S. 2021. Identification of sapstain fungi on weathered wooden surfaces of buildings at Jangheung and Jeju island. Journal of the Korean Wood Science and Technology 49(6): 591-601.   DOI
55 Zazharskyi, V.V., Davydenko, P.O., Kulishenko, O.M., Borovik, I.V., Zazharska, N.M., Brygadyrenko, V.V. 2020. Antibacterial and fungicidal activities of ethanol extracts of 38 species of plants. Biosystems Diversity 28(3): 281-289.   DOI
56 Zhou, P., Fu, J., Hua, H., Liu, X. 2017. In vitro inhibitory activities of magnolol against Candida spp. Drug Design, Development and Therapy 11: 2653-2661.   DOI
57 Zhu, S., Dou, S., Liu, X., Liu, R., Zhang, W, Huang, H., Zhang, Y., Hu, Y., Wang, S. 2011. Qualitative and quantitative analysis of alkaloids in Cortex Phellodendri by HPLC-ESI-MS/MS and HPLC-DAD. Chemical Research in Chinese Universities 27(1): 38-44.
58 Zoric, N., Kosalec, I., Tomic, S., Bobnjaric, I., Jug, M., Vlainic, T., Vlainic, J. 2017. Membrane of Candida albicans as a target of berberine. BMC Complementary Medicine and Alternative Medicin 17(1): 268.   DOI
59 Yapar, N. 2014. Epidemiology and risk factors for invasive candidiasis. Therapeutics and Clinical Risk Management 10: 95-105.   DOI
60 Campos, R.S., Silva, C.R., Neto, J.B.A., Sampaio, L.S., Nascimento, F.B.S.A., Moraes, M.O., Cavalcanti, B.C., Magalhaes, H.F., Gomes, A.O.C.V., Lobo, M.D.P., Junior, H.V.N. 2018. Antifungal activity of palmatine against strains of Candida spp. resistant to azoles in planktonic cells and biofilm. International Journal of Current Microbiology and Applied Sciences 7(2): 3657-3669.
61 Soll, D.R., Galask, R., Schmid, J., Hanna, C., Mac, K., Morrow, B. 1991. Genetic dissimilarity of commensal strains of Candida spp. carried in different anatomical locations of the same healthy women. Journal of Clinical Microbiology 29(8): 1702-1710.   DOI
62 Sanglard, D., Coste, A.T. 2016. Activity of isavuconazole and other azoles against Candida clinical isolates and yeast model systems with known azole resistance mechanisms. Antimicrobial Agents and Chemotherapy 60(1): 229-238.   DOI
63 Serra, E., Hidalgo-Bastida, L.A., Verran, J., Williams, D., Malic, S. 2018. Antifungal activity of commercial essential oils and biocides against Candida albicans. Pathogens 7(1): 15.   DOI
64 Sharon, V., Fazel, N. 2010. Oral candidiasis and angular cheilitis. Dermatologic Therapy 23(3): 230-242.   DOI
65 Sun, Y., Lenon, G.B., Yang, A.W.H. 2019. Phellodendri Cortex: A phytochemical, pharmacological, and pharmacokinetic review. Evidence-Based Complementary and Alternative Medicine 2019: 7621929.   DOI
66 Sun, L.M., Liao, K., Liang, S., Yu, P.H., Wang, D.Y. 2015b. Synergistic activity of magnolol with azoles and its possible antifungal mechanism against Candida albicans. Journal of Applied Microbiology 118(4): 826-838.   DOI
67 Gonzalez, G.M., Robledo, E., Garza-Gonzalez, E., Elizondo, M., Gonzalez, J.G. 2009. Efficacy of albaconazole against Candida albicans in a vaginitis model. Antimicrobial Agents and Chemotherapy 53(10): 4540-4541.   DOI
68 Fujii, A., Okuyama, T., Wakame, K., Okumura, T., Ikeya, Y., Nishizawa, M. 2017. Identification of anti-inflammatory constituents in Phellodendri Cortex and Coptidis Rhizoma by monitoring the suppression of nitric oxide production. Journal of Natural Medicines 71(4): 745-756.   DOI
69 D'Auria, F.D., Tecca, M., Strippoli, V., Salvatore, G., Battinelli, L., Mazzanti, G. 2005. Antifungal activity of Lavandula angustifolia essential oil against Candida albicans yeast and mycelial form. Medical Mycology 43(5): 391-396.   DOI
70 Sun, L., Sun, S., Cheng, A., Wu, X., Zhang, Y., Lou, H. 2009. In vitro activities of retigeric acid B alone and in combination with azole antifungal agents against Candida albicans. Antimicrobial Agents and Chemotherapy 53(4): 1586-1591.   DOI
71 Suprapti, S., Djarwanto, D., Listya Mustika, D. 2020. Determining the wood (Parashorea spp.) decaying and metal corroding abilities of eight fungi. Journal of the Korean Wood Science and Technology 48(1): 50-60.   DOI
72 Sun, L., Liao, K., Wang, D. 2015a. Effects of magnolol and honokiol on adhesion, yeast-hyphal transition, and formation of biofilm by Candida albicans. PLOS ONE 10(2): e0117695.   DOI
73 Soliman, S.S.M., Semreen, M.H., El-Keblawy, A.A., Abdullah, A., Uppuluri, P., Ibrahim, A.S. 2017. Assessment of herbal drugs for promising anti-Candida activity. BMC Complementary Medicine and Therapies 17(1): 257.   DOI
74 Ryuk, J.A., Zheng, M.S., Lee, M.Y., Seo, C.S., Li, Y., Lee, S.H., Moon, D.C., Lee, H.W., Lee, J.H., Park, J.Y., Son, J.K., Ko, B.S. 2012. Discrimination of Phellodendron amurense and P. chinense based on DNA analysis and the simultaneous analysis of alkaloids. Archives of Pharmacal Research 35(6): 1045-1054.   DOI
75 Sandven, P. 2000. Epidemiology of candidemia. Revista Iberoamericana de Micologia 17(3): 73-81.
76 Shai, L.J., McGaw, L.J., Masoko, P., Eloff, J.N. 2008. Antifungal and antibacterial activity of seven traditionally used South African plant species active against Candida albicans. South African Journal of Botany 74(4): 677-684.   DOI
77 Hassan, H.A., Genaidy, M.M., Kamel, M.S., Abdelwahab, S.F. 2020. Synergistic antifungal activity of mixtures of clove, cumin and caraway essential oils and their major active components. Journal of Herbal Medicine 24: 100399.   DOI
78 Bona, E., Cantamessa, S., Pavan, M., Novello, G., Massa, N., Rocchetti, A., Berta, G., Gamalero, E. 2016. Sensitivity of Candida albicans to essential oils: Are they an alternative to antifungal agents? Journal of Applied Microbiology 121(6): 1530-1545.   DOI
79 Hidayat, A., Turjaman, M., Faulina, S.A., Ridwan, F., Najmulah, A.A., Irawadi, T.T., Iswanto, A.H. 2019. Antioxidant and antifungal activity of endophytic fungi associated with agarwood trees. Journal of the Korean Wood Science and Technology 47(4): 459-471.   DOI
80 Jung, H.C. 2019. Enhancement of laccase production from wood-rotting fungus by co-culture with Trichoderma longibrachiatum. Journal of the Korean Wood Science and Technology 47(2): 210-220.   DOI
81 Chen, Y.H., Lu, M.H., Guo, D.S., Zhai, Y.Y., Miao, D., Yue, J.Y., Yuan, C.H., Zhao, M.M., An, D.R. 2019. Antifungal effect of magnolol and honokiol from Magnolia officinalis on Alternaria alternata causing tobacco brown spot. Molecules 24(11): 2140.   DOI
82 Baddley, J.W., Poppas, P.G. 2005. Antifungal combination therapy: Clinical potential. Drugs 65(11): 1461-1480.   DOI
83 Bernardes, I., Felipe Rodrigues, M.P., Bacelli, G.K., Munin, E., Alves, L.P., Costa, M.S. 2012. Aloe vera extract reduces both growth and germ tube formation by Candida albicans. Mycoses 55(3): 257-261.   DOI
84 Chan, L.W., Cheah, E.L.C., Saw, C.L.L., Weng, W., Heng, P.W.S. 2008. Antimicrobial and antioxidant activities of Cortex Magnoliae Officinalis and some other medicinal plants commonly used in South-East Asia. Chinese Medicine 3(1): 15.   DOI
85 Dartevelle, P., Ehlinger, C., Zaet, A., Boehler, C., Rabineau, M., Westermann, B., Strub, J.M., Cianferani, S., Haikel, Y., Metz-Boutigue, M.H., Marban, C. 2018. D-Cateslytin: A new antifungal agent for the treatment of oral Candida albicans associated infections. Scientific Reports 8(1): 9235.   DOI
86 de Oliveira Santos, G.C., Vasconcelos, C.C., Lopes, A.J.O., de Sousa Cartagenes, M.S., Filho, A.K.D.B., do Nascimento, F.R.F., Ramos, R.M., Pires, E.R.R.B., de Andrade, M.S., Rocha, F.M.G., de Andrade Monteiro, C. 2018. Candida infections and therapeutic strategies: Mechanisms of action for traditional and alternative agents. Frontiers in Microbiology 9: 1351.   DOI
87 Adfa, M., Romayasa, A., Kusnanda, A.J., Avidlyandi, A., Yudha, S.S., Banon, C., Gustian, I. 2020. Chemical components, antitermite and antifungal activities of Cinnamomum parthenoxylon wood vinegar. Journal of the Korean Wood Science and Technology 48(1): 107-116.   DOI
88 Irfan, M., Alam, S., Manzoor, N., Abid, M. 2017. Effect of quinoline based 1,2,3-triazole and its structural analogues on growth and virulence attributes of Candida albicans. PLOS ONE 12(4): e0175710.   DOI
89 Chen, Y., Zeng, H., Tian, J., Ban, X., Ma, B., Wang, Y. 2013. Antifungal mechanism of essential oil from Anethum graveolens seeds against Candida albicans. Journal of Medical Microbiology 62(8): 1175-1183.   DOI
90 Escalante, A., Gattuso, M., Perez, P., Zacchino, S. 2008. Evidence for the mechanism of action of the antifungal phytolaccoside B isolated from Phytolacca tetramera Hauman. Journal of Natural Products 71(10): 1720-1725.   DOI
91 Wang, K., Dang, W., Xie, J., Zhu, R., Sun, M., Jia, F., Zhao, Y., An, X., Qiu, S., Li, X., Ma, Z., Yan, W., Wang, R. 2015. Antimicrobial peptide protonectin disturbs the membrane integrity and induces ROS production in yeast cells. Biochimica et Biophysica Acta (BBA) - Biomembranes 1848(10 Pt A): 2365-2373.   DOI
92 Whaley, S.G., Berkow, E.L., Rybak, J.M., Nishimoto, A.T., Barker, K.S., Rogers, P.D. 2017. Azole antifungal resistance in Candida albicans and emerging non-albicansCandida species. Frontiers in Microbiology 7: 2173.   DOI
93 Xie, Y., Liu, X., Zhou, P. 2020. In vitro antifungal effects of berberine against Candida spp. in planktonic and biofilm conditions. Drug Design, Development and Therapy 14: 87-101.   DOI
94 Xu, B., Yan, Y., Huang, J., Yin, B., Pan, Y., Ma, L. 2020. Cortex Phellodendri extract's anti-diarrhea effect in mice related to its modification of gut microbiota. Biomedicine and Pharmacotherapy 123: 109720.   DOI
95 Kim, J., Bao, T.H.Q., Shin, Y.K., Kim, K.Y. 2018. Antifungal activity of magnoflorine against Candida strains. World Journal of Microbiology and Biotechnology 34(11): 167.   DOI
96 Eksi, F., Gayyurhan, E.D., Balci, I. 2013. In vitro susceptibility of Candida species to four antifungal agents assessed by the reference broth microdilution method. The Scientific World Journal 2013: 236903.   DOI
97 Freile M.L., Giannini, F., Pucci, G., Sturniolo, A., Rodero, L., Pucci, O., Balzareti, V., Enriz, R.D. 2003. Antimicrobial activity of aqueous extracts and of berberine isolated from Berberis heterophylla. Fitoterapia 74(7-8): 702-705.   DOI
98 Jiang, Y., Vaysse, J., Gilard, V., Balayssac, S., Dejean, S., Malet-Martino, M., David, B., Fiorini, C., Barbin, Y. 2012. Quality assessment of commercial Magnoliae Officinalis Cortex by 1H-NMR-based metabolomics and HPLC methods. Phytochemical Analysis 23(4): 387-395.   DOI
99 Kim, J.H., Weeratunga, P., Kim, M.S., Nikapitiya, C., Lee, B.H., Uddin, M.B., Kim, T.H., Yoon, J.E., Park, C., Ma, J.Y., Kim, H., Lee, J.S. 2016. Inhibitory effects of an aqueous extract from Cortex Phellodendri on the growth and replication of broad-spectrum of viruses in vitro and in vivo. BMC Complementary and Alternative Medicine 16(1): 265.   DOI
100 Kumar, A., Ekavali, Chopra, K., Mukherjee, M., Pottabathini, R., Dhull, D.K. 2015. Current knowledge and pharmacological profile of berberine: An update. European Journal of Pharmacology 761: 288-297.   DOI
101 Leite, M.C.A., Bezerra, A.P.B., de Sousa, J.P., Guerra, F.Q.S., Lima, E.O. 2014a. Evaluation of antifungal activity and mechanism of action of citral against Candida albicans. Evidence-Based Complementary and Alternative Medicine 2014: 378280.   DOI
102 Kuo, C.L., Chi, C.W., Liu, T.Y. 2004. The anti-inflammatory potential of berberine in vitro and in vivo. Cancer Letters 203(2): 127-137.   DOI
103 Landers, D.V., Wiesenfeld, H.C., Heine, R.P., Krohn, M.A., Hillier, S.L. 2004. Predictive value of the clinical diagnosis of lower genital tract infection in women. American Journal of Obstetrics and Gynecology 190(4): 1004-1008.   DOI
104 Lee, H.S., Kim, Y. 2016. Antifungal activity of Salvia miltiorrhiza against Candida albicans is associated with the alteration of membrane permeability and (1,3)-β-D-glucan synthase activity. Journal of Microbiology and Biotechnology 26(3): 610-617.   DOI
105 Leite, M.C.A., de Brito Bezerra, A.P., de Sousa, J.P., de Oliveira Lima, E. 2014b. Investigating the antifungal activity and mechanism(s) of geraniol against Candida albicans strains. Medical Mycology 53(3): 275-284.   DOI
106 Lemar, K.M., Passa, O., Aon, M.A., Cortassa, S., Muller, C.T., Plummer, S., O'Rourke, B., Lloyd, D. 2005. Allyl alcohol and garlic (Allium sativum) extract produce oxidative stress in Candida albicans. Microbiology 151(10): 3257-3265.   DOI
107 Luo, H., Wu, H., Yu, X., Zhang, X., Lu, Y., Fan, J., Tang, L., Wang, Z. 2019. A review of the phytochemistry and pharmacological activities of Magnoliae Officinalis Cortex. Journal of Ethnopharmacology 236: 412-442.   DOI
108 Li, Y., Jiao, P., Li, Y., Gong, Y., Chen, X., Sun, S. 2019. The synergistic antifungal effect and potential mechanism of D-penicillamine combined with fluconazole against Candida albicans. Frontiers in Microbiology 10: 2853.   DOI