1 |
Mao, X.B., Eksiwong, T., Chauvatcharin, S., Zhong, J.J. 2005. Optimization of carbon source and carbon / nitrogen ratio for cordycepin production by submerged cultivation of medicinal mushroom Cordyceps militaris. Process Biochemistry 40(5): 1667-1672.
DOI
|
2 |
Ng, T.B., Wang, H.X. 2005. Pharmacological actions of Cordyceps, a prized folk medicine. Journal of Pharmacy and Pharmacology 57(12): 1509-1519.
DOI
|
3 |
Shih, IL., Tsai, KL., Hsieh, C. 2007. Effects of culture conditions on the mycelial growth and bioactive metabolite production in submerged culture of Cordyceps militaris. Biochemical Engineering Journal 33(3): 193-201.
DOI
|
4 |
Souilem, F., Fernandes, A., Calhelha, R.C., Barreira, J.C.M., Barros, L., Skhiri, F., Martins, A., Ferreira, I.C.F.R. 2017. Wild mushroom and their mycelia as sources of bioactive compounds: Antioxidant, anti-inflammatory and cytotoxic properties. Food Chemistry 230: 40-48.
DOI
|
5 |
Tian, X., Li, Y., Shen, Y., Li, Q., Wang, Q., Feng, L. 2015. Apoptosis and inhibition of proliferation of cancer cells induced by cordycepin. Oncology Letters 10(2): 595-599.
DOI
|
6 |
Tuli, H.S., Sandhu, S.S., Sharma, A.K. 2014. Pharmacological and therapeutic potential of Cordyceps with special reference to Cordycepin. 3 Biotech 4(1): 1-12.
DOI
|
7 |
Tuli, H.S., Sharma, A.K., Sandhu, S.S., Kashyap, D. 2013. Cordycepin: a bioactive metabolite with therapeutic potential. Life Sciences 93(23): 863-869.
DOI
|
8 |
Baik, J.S., Kwon, H.Y., Kim, K.S., Jeong, Y.K., Cho, Y.S., Lee, Y.C. 2012. Cordycepin induces apoptosis in human neuroblastoma SK-N-BE(2)-C and melanoma SK-MEL-2 cells. Indian Journal of Biochemistry and Biophysics 49(2): 86-91.
|
9 |
Wu, J.Y., Chen, H.B., Chen, M.J., Kan, S.C., Shieh, C.J., Liu, Y.C. 2013. Quantitative analysis of LED effects on edible mushroom Pleurotus eryngiiin solid and submerged cultures. Journal of Chemical Technology & Biotechnology 88(10): 1841-1846.
DOI
|
10 |
Ahn, Y.J., Park, S.J., Lee, S.G., Shin, S.C., Choi, D.H. 2000. Cordycepin: Selective growth inhibitor derived from liquid culture of Cordyceps militaris against Clostridium spp. Journal of Agricultural and Food Chemistry 48(7): 2744-2748.
DOI
|
11 |
Blumenstein, A., Vienken, K., Tasler, R., Purschwitz, J., Veith, D., Frankenberg-Dinkel, N., Fischer, R. 2005. The Aspergillus nidulans phytochrome FphA represses sexual development in red light. Current Biology 15(20): 1833-1838.
DOI
|
12 |
Chen, H.B., Wu, J.Y., Wang, C.F., Fu, C.C., Shieh, C.J., Chen, C.I., Wang, C.Y., Liu, Y.C. 2010. Modeling on chlorophyll a and phycocyanin production by Spirulina platensisunder various light-emitting diodes. Biochemical Engineering Journal 53(1): 52-56.
DOI
|
13 |
Dong, C.H., Xie, X.Q., Wang, X.L., Zhan, Y., Yao, Y.J. 2009. Application of Box-Behnken design in optimisation for polysaccharides extraction from cultured mycelium of Cordyceps sinensis. Food and bioproducts processing 87(2): 139-144.
DOI
|
14 |
Cheng, C.W., Chen, C.K., Chang, C.J., Chen, L.Y. 2012. Effect of colour LEDs on mycelia growth of Aspergillus ficuum and phytase production in photo-fermentations. Journal of Photochemistry and Photobiology B: Biology 106: 81-86.
DOI
|
15 |
Chiang, S.S., Liang, Z.C., Wang, Y.C., Liang, C.H. 2017. Effect of light-emitting diodes on the production of cordycepin, mannitol and adenosine in solid-state fermented rice by Cordyceps militaris. Journal of Food Composition and Analysis 60: 51-56.
DOI
|
16 |
Cui, J.D., Zhang, B.Z. 2011. Comparison of culture methods on exopolysaccharide production in the submerged culture of Cordyceps militaris and process optimization. Letters in applied microbiology 52(2): 123-128.
DOI
|
17 |
Cui, J.D., Zhang, Y.N. 2012. Evaluation of metal ions and surfactants effect on cell growth and exopolysaccharide production in two-stage submerged culture of Cordyceps militaris. Applied biochemistry and biotechnology 168(6): 1394-1404.
DOI
|
18 |
Danesi, E.D.G., Rangel-Yagui, C.O., Carvalho, J.C.M., Sato, S. 2004. Effect of reducing the light intensity on the growth and production of chlorophyll by Spirulinaplatensis. Biomass and Bioenergy 26(4): 329-335.
DOI
|
19 |
Dong, J.Z., Lei, C., Zheng, X.J., Ai, X.R., Wang, Y., Wang, Q. 2012. Light wavelengths regulate growth and active components of Cordyceps militaris fruit bodies. Journal of Food Biochemistry 37(5): 578-584.
DOI
|
20 |
Dong, J.Z., Ding, J., Yu, P.Z., Lei, C., Zheng, X.J., Wang, Y. 2013. Composition and distribution of the main active components in selenium-enriched fruit bodies of Cordyceps militaris link. Food chemistry 137(1-4): 164-167.
DOI
|
21 |
Kim, H.G., Shrestha, B., Lim, S.Y., Yoon, D.H., Chang, W.C., Shin, D.J., Han, S.K., Park, S. M., Park, J.H., Park, H.I., Sung, J.M., Jang, Y., Chung, N., Hwang, K.C., Kim, T.W. 2006. Cordycepin inhibits lipopolysaccharide-induced inflammation by the suppression of NF-kappaB through Akt and p38 inhibition in RAW 264.7 macrophage cells. European Journal of Pharmacology 545(2-3): 192-199.
DOI
|
22 |
Guo, P., Kai, Q., Gao, J. 2010. Cordycepin prevents hyperlipidemia in hamsters fed a high-fat diet via activation of AMP-activated protein kinase. Journal of Pharmacological Sciences 113(4): 395-403.
DOI
|
23 |
Ha, S.Y., Jung, J.Y., Kang, H.Y., Kim, T.H., Yang, J.K. 2020. Tyrosinase activity and melanogenic effects of Rhododendron schlippenbachii extract In vivo and In vitro. Journal of the Korean Wood Science and Technology 48(2): 166-180.
DOI
|
24 |
Hidayat, A., Turjaman, M., Faulina, S.A., Ridwan, F., Irawadi, T.T., Iswanto, A.H. 2019. Antioxidant and antifungal activity of endophytic fungi associated with agarwood trees. Journal of the Korean Wood Science and Technology 47(4): 459-471.
DOI
|
25 |
Hsu, T.H., Shiao, L.H., Hsieh, C., Chang, D.M. 2002. A comparison of the chemical composition and bioactive ingredients of the Chinese medicinal mushroom Dong Chong Xia Cao, its counterfeit and mimic, and fermented mycelium of Cordyceps sinensis. Food Chemistry 78(4): 463-469.
DOI
|
26 |
Imtiaj, A., Lee, T.S. 2007. Screening of antibacterial and antifungal activities from Korean wild mushrooms. World Journal of Agricultural Sciences 3(3): 316-321.
|
27 |
Kim, S.W., Hwang, H.J., Xu, C.P., Sung, J.M., Choi, J.W., Yum, J.W. 2003. Optimization of submerged culture process for the production of biomass and exo-polysaccharides by Cordyceps militaris C738. Journal of Applied Microbiology 94(1): 120-126.
|
28 |
Liang, Z.C., Liang, C.H., Wu, C.Y. 2014. Various grain substrates for the production of fruiting bodies and bioactive compounds of the medicinal caterpillar mushroom, Cordyceps militaris (Ascomycetes). International Journal of Medicinal Mushrooms 16(6): 569-578.
DOI
|
29 |
Kodama, E.N., McCaffrey, R.P., Yusa, K., Mitsuya, H. 2000. Antileukemic activity and mechanism of action of cordycepin against terminal deoxynucleotidyl transferase-positive (TdT+) leukemic cells. Biochemical Pharmacology 59(3): 273-281.
DOI
|
30 |
Leung, P.H., Zhang, Q.X., Wu, J.Y. 2006. Mycelium cultivation, chemical composition and antitumour activity of a Tolypocladium sp. fungus isolated from wild Cordyceps sinensis. Journal of Applied Microbiology 101(2): 275-283.
DOI
|
31 |
Lin, R., Liu, H., Wu, S., Pang, L., Jia, M., Fan, K., Jia, S., Jia, L. 2012. Production and in vitro antioxidant activity of exopolysaccharide by a mutant, Cordyceps militaris SU5-08. International Journal of Biological Macromolecules 51(1-2): 153-157.
DOI
|
32 |
Ling, J.Y., Sun, Y.J., Zhang, H., Zhang, C.K. 2002. Measurement of cordycepin and adenosine in stroma of Cordyceps sp. by capillary zone electrophoresis (CZE). Journal of Bioscience and Bioengineering 94(4): 371-374.
DOI
|
33 |
Liu, Z., Li, P., Zhao, D., Tang, H., Guo, J. 2011. Anti-inflammation effects of Cordyceps sinensis mycelium in focal cerebral ischemic injury rats. Inflammation 34(6): 639-644.
DOI
|
34 |
Mao, X.B., Zhong, J.J. 2004. Hyperproduction of cordycepin by two‐stage dissolved oxygen control in submerged cultivation of medicinal mushroom Cordyceps militaris in bioreactors. Biotechnology Progress 20(5): 1408-1413.
DOI
|