Browse > Article
http://dx.doi.org/10.5658/WOOD.2018.46.6.713

Symbiotic Bacterial Flora Changes in Response to Low Temperature in Reticulitermes speratus KMT001  

Lee, Dongmin (Department of Forest Products and Biotechnology, College of Science and Technology, Kookmin University)
Kim, Yeong-Suk (Department of Forest Products and Biotechnology, College of Science and Technology, Kookmin University)
Kim, Young-Kyoon (Department of Forest Products and Biotechnology, College of Science and Technology, Kookmin University)
Kim, Tae-Jong (Department of Forest Products and Biotechnology, College of Science and Technology, Kookmin University)
Publication Information
Journal of the Korean Wood Science and Technology / v.46, no.6, 2018 , pp. 713-725 More about this Journal
Abstract
Lower termites require symbiotic microbes in their gut. The microbial communities in the termites must adapt to the termite temperature. Reticulitermes speratus KMT001 from Bukhan Mountain in Seoul may require a special symbiotic microorganisms for growth in low temperature Korean habitat. A metagenomics analysis showed a dramatic change in the symbiotic bacterial flora in the gut of R. speratus KMT001 in response to low temperatures of $4^{\circ}C$ or $10^{\circ}C$. Elusimicrobia, which are endosymbionts of flagellate protists, is the dominant phylum in the termite gut at ${\geq}15^{\circ}C$ but its population decreased drastically at low temperature. Four representative bacterial strains isolated from R. speratus KMT001 in a previous study produced maximum ${\beta}$-glucosidase levels within the temperature range of $10^{\circ}C-30^{\circ}C$. Elizabethkingia sp. BM10 produced ${\beta}$-glucosidase specifically at $10^{\circ}C$. This strain supported the existence of symbiotic bacteria for the low temperature habitat of the termite. This identified bacterium will be a resource for studying low temperature adaptation of termites, studying the gene expression at low temperatures, and developing an industrial cellulase at low temperature.
Keywords
symbiotic bacteria; Reticulitermes speratus; low temperature; Elizabethkingia;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Kim, M.J., Choi, Y.S., Lee, J., Kim, J.J., Kim, G.H. 2012. Molecular characteristics of subterranean termites of the genus Reticulitermes (Isoptera: Rhinotermitidae) from Korea. Annals of the Entomological Society of America 105(1): 97-102.   DOI
2 Kim, S.H., Chung, Y.J. 2017. Ingestion toxicity of fipronil on Reticulitermes speratus kyushuensis (Isoptera: Rhinotermitidae) and its applicability as a termite bait. Journal of the Korean Wood Science and Technology 45(2): 159-167.   DOI
3 Kim, Y.H., Lee, Y.M., Kim, Y.S., Cho, M.J., Shin, K. 2010. Cellulase production in the digestive organs of Reticulitermes speratus, a native termite from Milyang Korea. Journal of the Korean Wood Science and Technology 38(5): 421-428.   DOI
4 Mun, S.P., Nicholas, D.D. 2017. Effect of proanthocyanidin-rich extracts from Pinus radiata bark on termite feeding deterrence. Journal of the Korean Wood Science and Technology 45(6): 720-727.   DOI
5 Needleman, S.B., Wunsch, C.D. 1970. A general method applicable to the search for similarities in the amino acid sequence of two proteins. Journal of Molecular Biology 48(3): 443-453.   DOI
6 Ohkuma, M., Kudo, T. 1996. Phylogenetic diversity of the intestinal bacterial community in the termite Reticulitermes speratus. Applied and Environmental Microbiology 62(2): 461-468.
7 Park, Y.C., Kitade, O., Schwarz, M., Kim, J.P., Kim, W. 2006. Intraspecific molecular phylogeny, genetic variation and phylogeography of Reticulitermes speratus (Isoptera: Rhinotermitidae). Molecular Cell 21(1): 89-103.
8 Peterson, B.F., Scharf, M.E. 2016. Lower termite associations with microbes: Synergy, protection, and interplay. Frontiers in Microbiology 7(422).
9 Peterson, C., Wagner, T.L., Mulrooney, J.E., Shelton, T.G. 2006. Subterranean termites - their prevention and control in buildings. Home and Garden Bulletin 64. pp. 38.
10 Rose, J.M., Caron, D.A. 2007. Does low temperature constrain the growth rates of heterotrophic protists? Evidence and implications for algal blooms in cold waters. Limnology and Oceanography 52(2): 886-895.   DOI
11 Rosengaus, R.B., Zecher, C.N., Schultheis, K.F., Brucker, R.M., Bordenstein, S.R. 2011. Disruption of the termite gut microbiota and its prolonged consequences for fitness. Applied and Environmental Microbiology 77(13): 4303-4312.   DOI
12 Shi, Y., Huang, Z., Han, S., Fan, S., Yang, H. 2015. Phylogenetic diversity of Archaea in the intestinal tract of termites from different lineages. Journal of Basic Microbiology 55(8): 1021-1028.   DOI
13 Watanabe, H., Tokuda, G. 2010. Cellulolytic systems in insects. Annual Review of Entomology 55(1): 609-632.   DOI
14 Yang, H., Schmitt-Wagner, D., Stingl, U., Brune, A. 2005. Niche heterogeneity determines bacterial community structure in the termite gut (Reticulitermes santonensis). Environmental Microbiology 7(7): 916-932.   DOI
15 Cleveland, L.R. 1923. Symbiosis between termites and their intestinal protozoa. Proceedings of the National Academy of Sciences of the United States of America 9(12): 424-428.   DOI
16 Ahn, S.J., Costa, J., Emanuel, J.R. 1996. PicoGreen quantitation of DNA: effective evaluation of samples pre- or post-PCR. Nucleic Acids Research 24(13): 2623-2625.   DOI
17 Brune, A. 2014. Symbiotic digestion of lignocellulose in termite guts. Nature Reviews Microbiology 12(3): 168-180.   DOI
18 Brune, A., Ohkuma, M. 2011. Role of the termite gut microbiota in symbiotic digestion. In: Biology of termites: A modern synthesis. Ed. by Bignell D.E., Roisin Y., and Lo N., Springer. pp. 439-475.
19 Cho, M.-J., Kim, Y.-H., Shin, K., Kim, Y.-K., Kim, Y.-S., Kim, T.-J. 2010a. Symbiotic adaptation of bacteria in the gut of Reticulitermes speratus: Low endo-$\beta$-1,4-glucanase activity. Biochemical and Biophysical Research Communications 395(3): 432-435.   DOI
20 Cho, M.J., Shin, K., Kim, Y.-K., Kim, Y.-S., Kim, T.-J. 2010b. Phylogenetic analysis of Reticulitermes speratus using the mitochondrial cytochrome C oxidase subunit I gene. Journal of the Korean Wood Science and Technology 38(2): 135-139.   DOI
21 Herlemann, D.P.R., Geissinger, O., Brune, A. 2007. The termite group I phylum is highly diverse and widespread in the environment. Applied and Environmental Microbiology 73(20): 6682-6685.   DOI
22 Evans, T.A., Forschler, B.T., Grace, J.K. 2013. Biology of invasive termites: A worldwide review. Annual Review of Entomology 58(1): 455-474.   DOI
23 Geissinger, O., Herlemann, D.P.R., Mörschel, E., Maier, U.G., Brune, A. 2009. The ultramicrobacterium "Elusimicrobium minutum" gen. nov., sp. nov., the first cultivated representative of the termite group 1 phylum. Applied and Environmental Microbiology 75(9): 2831-2840.   DOI
24 Ghaly, A.E., Edwards, S. 2011. Termite damage to buildings: Nature of attacks and preventive construction methods. American Journal of Engineering and Applied Sciences 4(2): 187-200.   DOI
25 Hongoh, Y., Ohkuma, M., Kudo, T. 2003. Molecular analysis of bacterial microbiota in the gut of the termite Reticulitermes speratus (Isoptera; Rhinotermitidae). FEMS Microbiology Ecology 44(2): 231-242.   DOI
26 Kafri, M., Metzl-Raz, E., Jona, G., Barkai, N. 2016. The cost of protein production. Cell Reports 14(1): 22-31.   DOI
27 Inoue, T., Murashima, K., Azuma, J.I., Sugimoto, A., Slaytor, M. 1997. Cellulose and xylan utilisation in the lower termite Reticulitermes speratus. Journal of Insect Physiology 43(3): 235-242.   DOI
28 Jung, H.-S., Choi, Y., Oh, J.-H., Lim, G.-H. 2002. Recent trends in temperature and precipitation over South Korea. International Journal of Climatoogy 22: 1327-1337.   DOI